Skip to main content

Advertisement

Log in

Expression of matrix metalloproteinases in the subretinal fluid correlates with the extent of rhegmatogenous retinal detachment

  • Laboratory Investigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

We investigated the activity of matrix metalloproteinase (MMP)−2 and −9 and the protein levels of MMP−1, −3, −8 and the tissue inhibitor of MMPs (TIMP)−1 in the subretinal fluid (SRF) of patients with rhegmatogenous retinal detachment (RRD) and establishment of potential correlations with clinical parameters.

Methods

Thirty-seven SRF from RRD patients and nine vitreous samples from the human eye of organ donors (controls) were collected and assayed for MMP−1,−3,−8 and TIMP−1 levels using ELISA and for MMP−2 and −9 activity employing gelatin zymography.

Results

MMP−1, MMP−3, MMP−8, proMMP−2, proMMP−9, MMP−9 and TIMP−1 levels were higher in SRF compared with vitreous fluid. Overall, MMPs and TIMPs were differentially expressed in SRF with respect to duration and extent of RRD, as well as to stage of proliferative vitreoretinopathy. Regression analysis for all data indicated that a model consisting of MMP−3, MMP−8 and proMMP−9 could estimate the extent of RRD.

Conclusions

MMPs and TIMP−1 levels are elevated in SRF during RRD. A regression model consisting of MMP−3, MMP−8 and proMMP−9 may be proved to be of potential use in providing information for evaluation of the extent of RRD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abu El-Asrar AM, Dralands L, Veckeneer M, Geboes K, Missottn L, Van Aelst I, Opdenakker G (1998) Gelatinase B in proliferative vitreoretinal disorders. Am J Ophthalmol 125:844–851

    Article  PubMed  CAS  Google Scholar 

  2. Alexander JP, Bradley JMB, Gabourel JD, Acott TS (1990) Expression of matrix metalloproteinases and inhibitors by human retinal pigment epithelium. Invest Ophthalmol Vis Sci 31:2520–2528

    PubMed  CAS  Google Scholar 

  3. Armstrong PW, Moe GW, Howard RJ, Grima EA, Cruz TF (1994) Structural remodelling in heart failure: gelatinase induction. Can J Cardiol 10:214–220

    PubMed  CAS  Google Scholar 

  4. Aylward GW (2004) Proliferative vitreoretinopathy. In: Yanoff D, Duker JS (eds) Ophthalmology. Mosby, St Louis, pp 1002–1006

    Google Scholar 

  5. Bachmeier BE, Nerlich AG, Boukamp P, Lichtinghagen R, Tschesche H, Fritz H, Fink E (2000) Human keratinocyte cell lines differ in the expression of the collagenolytic matrix metalloproteinases −1, −8 and −13 and of TIMP−1. Biol Chem 381:509–516

    Article  PubMed  CAS  Google Scholar 

  6. Behzadian MA, Wang XL, Windsor LJ, Ghaly N, Caldwell RB (2001) TGF-β increases retinal endothelial cell permeability by increasing MMP−9: possible role of glial cells in endothelial cells in endothelial barrier function. Invest Ophthalmol Vis Sci 42:853–859

    PubMed  CAS  Google Scholar 

  7. Borden P, Heller RA (1997) Transcriptional control of matrix metalloproteinases and the tissue inhibitors of matrix metalloproteinases. Crit Rev Euk Gene Exp 7:159–178

    CAS  Google Scholar 

  8. Brinckerhoff CE (1992) Regulation of metalloproteinase gene expression: implications for osteoarthritis. Crit Rev Euk Gene Exp 2:145–164

    CAS  Google Scholar 

  9. Cao J, Sato H, Takino T, Seiki M (1995) The C-terminal region of membrane type matrix metalloproteinase is a functional trans-membrane domain required for pro-gelatinase A activation. J Biol Chem 270:801–805

    Article  PubMed  CAS  Google Scholar 

  10. Chambers AF, Matrisian LM (1997) Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst 89:1260–1270

    Article  PubMed  CAS  Google Scholar 

  11. Eichler W, Friedrichs U, Thies A, Tratz C, Wiedermann P (2002) Modulation of matrix metalloproteinase and TIMP−1 expression by cytokines in human RPE cells. Invest Ophthalmol Vis Sci 43:2767–2773

    PubMed  Google Scholar 

  12. El Bradey M, Cheng L, Bartsch DU, Appelt K, Rodanant N, Bergeron-Lynn G, Freeman WR (2004) Preventive versus treatment effect of AG3340, a potent matrix metalloproteinase inhibitor in a rat model of choroidal neovascularization. J Ocul Pharmacol Ther 20:217–236

    Article  PubMed  Google Scholar 

  13. Gomez DE, Alonso DF, Yoshiji H, Thorgeirsson UP (1997) Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol 74:111–122

    PubMed  CAS  Google Scholar 

  14. Gonzalez-Avila G, Mendez D, Lozano D, Ramos C, Delgado J, Iturria C (2004) Role of retinal detachment subretinal fluid on extracellular matrix metabolism. Ophthalmologica 218:49–56

    Article  PubMed  CAS  Google Scholar 

  15. Hunt RC, Fox A, al Pakalnis V, Sigel MM, Kosnosky W, Choudhury P, Black EP, (1993) Cytokines cause cultured retinal pigment epithelial cells to secrete metalloproteinases and to contract collagen gels. Invest Ophthalmol Vis Sci 34:3179–3186

    PubMed  CAS  Google Scholar 

  16. Itoh Y, Binner S, Nagase H (1995) Steps involved in activation of the complex of promatrix metalloproteinase 2 (progelatinase A) and tissue inhibitor of metalloproteinases (TIMP)−2 by 4-aminophenylmercuric acetate. Biochem J 308:645–651

    PubMed  CAS  Google Scholar 

  17. Karakiulakis G, Papanikolaou C, Jankovic SM, Aletras A, Papakonstantinou E, Vretou E, Mirtsou-Fidani V (1997) Increased type IV collagen-degrading activity in metastases originating from primary tumors of the human colon. Invasion Metastasis 17:158–168

    PubMed  CAS  Google Scholar 

  18. Kon CH, Occleston NL, Charteris D, Daniels J, Ayward GW, Khaw PT (1998) A prospective study of matrix metalloproteinases in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 39:1524–1529

    PubMed  CAS  Google Scholar 

  19. Leu ST, Batni S, Radeke MJ, Johnson LV, Anderson DH, Clegg DO (2002) Drusen are cold spots for proteolysis: expression of matrix metalloproteinases and their tissue inhibitor proteins in age-related macular degeneration. Exp Eye Res 74:141–154

    Article  PubMed  CAS  Google Scholar 

  20. Majka S, McGuire P, Colombo S, Das A (2001) The balance between proteinases and inhibitors in a murine model of proliferative retinopathy. Invest Ophthalmol Vis Sci 42:210–215

    PubMed  CAS  Google Scholar 

  21. Matsubara M, Girard MT, Kublin CL, Cintron C, Fini ME (1991) Differential roles for two gelatinolytic enzymes of the matrix metalloproteinase family in the remodelling cornea. Dev Biol 147:425–439

    Article  PubMed  CAS  Google Scholar 

  22. Meller D, Li DQ, Tseng SC (2000) Regulation of collagenase, stromelysin and gelatinase B in human conjuctival and conjuctivochalasis fibroblasts by interleukin-1beta and tumor necrosis factor-alpha. Invest Ophthalmol Vis Sci 41:2922–2929

    PubMed  CAS  Google Scholar 

  23. Papakonstantinou E, Dionyssopoulos A, Aletras AJ, Pesintzaki C, Minas A, Karakiulakis G (2004) Expression of matrix metalloproteinases and their endogenous tissue inhibitors in skin lesions from patients with tuberous sclerosis. J Am Acad Dermatol 51:526–533

    Article  PubMed  Google Scholar 

  24. Plantner JJ, Jiang C, Smine A (1998) Increase in interphotoreceptor matrix gelatinase A (MMP−2) associated with age-related macular degeneration. Exp Eye Res 67:637–645

    Article  PubMed  CAS  Google Scholar 

  25. Retina Society Terminology Committee (1983) The classification of retinal detachment with proliferative vitreoretinopathy. Am J Ophthalmol 90:121–125

    Google Scholar 

  26. Salzmann J, Limb GA, Khaw PT, Gregor ZJ, Webster L, Chignell AH, Charteris DG (2000) Matrix metalloproteinases and their natural inhibitors in fibrovascular membranes of proliferative diabetic retinopathy. Br J Ophthalmol 84:1091–1096

    Article  PubMed  CAS  Google Scholar 

  27. Sethi CS, Bailey TA, Luthert PJ, Chong NH (2000) Matrix metalloproteinase biology applied to vitreoretinal disorders. Br J Ophthalmol 84:654–666

    Article  PubMed  CAS  Google Scholar 

  28. Sheridan CM, Occleston NL, Hiscott P, Kon CH, Khaw PT, Grierson I (2001) Matrix metalloproteinases: a role in the contraction of vitreo-retinal scar tissue. Am J Pathol 159:1555–1566

    PubMed  CAS  Google Scholar 

  29. Sivak JM, Fini E (2002) MMPs in the eye: emerging roles for matrix metallo-proteinases in ocular pathology. Prog Retin Eye Res 21:1–14

    Article  PubMed  CAS  Google Scholar 

  30. Skiles JW, Gonella NC, Jeng AY (2001) The design, structure and therapeutic application of matrix metalloproteinase inhibitors. Curr Med Chem 8:425–474

    PubMed  CAS  Google Scholar 

  31. Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    Article  PubMed  CAS  Google Scholar 

  32. Stetler-Stevenson WG, Aznavoorian S, Liotta LA (1993) Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol 9:541–573

    Article  PubMed  CAS  Google Scholar 

  33. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases-structure, function, and biochemistry. Circ Res 92:827–839

    Article  PubMed  CAS  Google Scholar 

  34. Webster L, Chignell AH, Limb GA (1999) Predominance of MMP−1 and MMP−2 in epiretinal and subretinal membranes of proliferative vitreoretinopathy. Exp Eye Res 68:91–98

    Article  PubMed  CAS  Google Scholar 

  35. Wilkinson CP (2004) Rhegmatogenous retinal detachment. In: Yanoff D, Duker JS (eds) Ophthalmology. Mosby, St Louis, pp 982–989

    Google Scholar 

  36. Wong TTL, Sethi C, Daniels JT, Limb GA, Murphy G, Khaw PT (2002) Matrix metalloproteinases in disease and repair processes in the anterior segment. Surv Ophthalmol 47:239–256

    Article  PubMed  Google Scholar 

  37. Zhang X, Sakamoto T, Hata Y, Kubota T, Hisatomi T, Murata T, Ishibashi T, Inomata H (2002) Expression of matrix metalloproteinases and their inhibitors in experimental retinal ischemia-perfusion injury in rats. Exp Eye Res 74:577–584

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

CS and SAD were supported by ”Heraklitos” grant, EPEAEK II, Ministry of Education of Greece; funded by the 3rd Community Support Framework of the European Union.z

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stavros A. Dimitrakos.

Additional information

The last two authors share senior authorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Symeonidis, C., Diza, E., Papakonstantinou, E. et al. Expression of matrix metalloproteinases in the subretinal fluid correlates with the extent of rhegmatogenous retinal detachment. Graefe's Arch Clin Exp Ophthalmol 245, 560–568 (2007). https://doi.org/10.1007/s00417-006-0386-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-006-0386-3

Keywords

Navigation