Skip to main content
Log in

Impaired speed-dependent modulation of the gait pattern in multiple sclerosis

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

Walking dysfunction is common in people with multiple sclerosis (MS). Besides walking speed or endurance, one crucial feature of ambulatory function is the ability to adjust the gait pattern according to walking speed which relies on the integrity of spinal motor centres, their reciprocal connections to supraspinal networks and peripheral sensory input.

Objective

To investigate the capacity of people with MS to modify their gait pattern in response to changes in walking speed.

Methods

3D gait analysis during free treadmill walking was performed in 35 people with MS and 20 healthy controls. Twelve kinematic parameters ranging from basic spatiotemporal measures to complex indicators of intralimb coordination were assessed at different absolute and relative walking speeds.

Results

Cadence, double-limb support time, trunk movements and especially measures of intralimb coordination demonstrated significantly less speed-dependent modifications in MS than in controls. These limitations were more prominent in subjects with stronger MS-related impairment (worse outcome in clinical walking tests, higher Expanded Disability Status Scale).

Conclusion

The incapacity to modify specific elements of the walking pattern according to walking speed contributes to gait dysfunction in people with MS limiting activities of daily living. Gait modulation may serve as sensitive marker of walking function in MS.

Trial registration

Clinicaltrials.gov, NCT01576354; first posted April 12, 2012.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Grieve DW, Gear RJ (1966) The relationships between length of stride, step frequency, time of swing and speed of walking for children and adults. Ergonomics 9(5):379–399. https://doi.org/10.1080/00140136608964399

    Article  CAS  PubMed  Google Scholar 

  2. Nilsson J, Thorstensson A, Halbertsma J (1985) Changes in leg movements and muscle activity with speed of locomotion and mode of progression in humans. Acta Physiol Scand 123(4):457–475. https://doi.org/10.1111/j.1748-1716.1985.tb07612.x

    Article  CAS  PubMed  Google Scholar 

  3. Grillner S, Wallen P (1985) Central pattern generators for locomotion, with special reference to vertebrates. Annu Rev Neurosci 8:233–261. https://doi.org/10.1146/annurev.ne.08.030185.001313

    Article  CAS  PubMed  Google Scholar 

  4. Dietz V (2003) Spinal cord pattern generators for locomotion. Clin Neurophysiol 114(8):1379–1389. https://doi.org/10.1016/s1388-2457(03)00120-2

    Article  CAS  PubMed  Google Scholar 

  5. Grillner S, Wallen P, Saitoh K, Kozlov A, Robertson B (2008) Neural bases of goal-directed locomotion in vertebrates–an overview. Brain Res Rev 57(1):2–12. https://doi.org/10.1016/j.brainresrev.2007.06.027

    Article  PubMed  Google Scholar 

  6. Kister I, Chamot E, Salter AR, Cutter GR, Bacon TE, Herbert J (2013) Disability in multiple sclerosis: a reference for patients and clinicians. Neurology 80(11):1018–1024. https://doi.org/10.1212/WNL.0b013e3182872855

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kelleher KJ, Spence W, Solomonidis S, Apatsidis D (2010) The characterisation of gait patterns of people with multiple sclerosis. Disabil Rehabil 32(15):1242–1250. https://doi.org/10.3109/09638280903464497

    Article  PubMed  Google Scholar 

  8. Remelius JG, Jones SL, House JD, Busa MA, Averill JL, Sugumaran K, Kent-Braun JA, Van Emmerik RE (2012) Gait impairments in persons with multiple sclerosis across preferred and fixed walking speeds. Arch Phys Med Rehabil 93(9):1637–1642. https://doi.org/10.1016/j.apmr.2012.02.019

    Article  PubMed  Google Scholar 

  9. Comber L, Galvin R, Coote S (2017) Gait deficits in people with multiple sclerosis: a systematic review and meta-analysis. Gait Post 51:25–35. https://doi.org/10.1016/j.gaitpost.2016.09.026

    Article  Google Scholar 

  10. Filli L, Sutter T, Easthope CS, Killeen T, Meyer C, Reuter K, Lorincz L, Bolliger M, Weller M, Curt A, Straumann D, Linnebank M, Zorner B (2018) Profiling walking dysfunction in multiple sclerosis: characterisation, classification and progression over time. Sci Rep 8(1):4984. https://doi.org/10.1038/s41598-018-22676-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pau M, Coghe G, Atzeni C, Corona F, Pilloni G, Marrosu MG, Cocco E, Galli M (2014) Novel characterization of gait impairments in people with multiple sclerosis by means of the gait profile score. J Neurol Sci 345(1–2):159–163. https://doi.org/10.1016/j.jns.2014.07.032

    Article  PubMed  Google Scholar 

  12. Zorner B, Filli L, Reuter K, Kapitza S, Lorincz L, Sutter T, Weller D, Farkas M, Easthope CS, Czaplinski A, Weller M, Linnebank M (2016) Prolonged-release fampridine in multiple sclerosis: Improved ambulation effected by changes in walking pattern. Mult Scler. https://doi.org/10.1177/1352458515622695

    Article  PubMed  Google Scholar 

  13. Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33(11):1444–1452. https://doi.org/10.1212/wnl.33.11.1444

    Article  CAS  PubMed  Google Scholar 

  14. Goldman MD, Marrie RA, Cohen JA (2008) Evaluation of the six-minute walk in multiple sclerosis subjects and healthy controls. Mult Scler 14(3):383–390. https://doi.org/10.1177/1352458507082607

    Article  PubMed  Google Scholar 

  15. Motl RW, Cohen JA, Benedict R, Phillips G, LaRocca N, Hudson LD, Rudick R, Multiple Sclerosis Outcome Assessments C (2017) Validity of the timed 25-foot walk as an ambulatory performance outcome measure for multiple sclerosis. Mult Scler 23(5):704–710. https://doi.org/10.1177/1352458517690823

    Article  PubMed  PubMed Central  Google Scholar 

  16. Meyer C, Killeen T, Easthope CS, Curt A, Bolliger M, Linnebank M, Zorner B, Filli L (2019) Familiarization with treadmill walking: How much is enough? Sci Rep 9(1):5232. https://doi.org/10.1038/s41598-019-41721-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zeni JA Jr, Richards JG, Higginson JS (2008) Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait Post 27(4):710–714. https://doi.org/10.1016/j.gaitpost.2007.07.007

    Article  Google Scholar 

  18. Awai L, Curt A (2014) Intralimb coordination as a sensitive indicator of motor-control impairment after spinal cord injury. Front Hum Neurosci 8:148. https://doi.org/10.3389/fnhum.2014.00148

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pepin A, Norman KE, Barbeau H (2003) Treadmill walking in incomplete spinal-cord-injured subjects: 1. Adaptation to changes in speed. Spinal Cord 41(5):257–270. https://doi.org/10.1038/sj.sc.3101452

    Article  CAS  PubMed  Google Scholar 

  20. Bohannon RW (1997) Comfortable and maximum walking speed of adults aged 20–79 years: reference values and determinants. Age Ageing 26(1):15–19. https://doi.org/10.1093/ageing/26.1.15

    Article  CAS  PubMed  Google Scholar 

  21. Pepin A, Ladouceur M, Barbeau H (2003) Treadmill walking in incomplete spinal-cord-injured subjects: 2. Factors limiting the maximal speed. Spinal Cord 41(5):271–279. https://doi.org/10.1038/sj.sc.3101453

    Article  CAS  PubMed  Google Scholar 

  22. Zackowski KM, Smith SA, Reich DS, Gordon-Lipkin E, Chodkowski BA, Sambandan DR, Shteyman M, Bastian AJ, van Zijl PC, Calabresi PA (2009) Sensorimotor dysfunction in multiple sclerosis and column-specific magnetization transfer-imaging abnormalities in the spinal cord. Brain 132(Pt 5):1200–1209. https://doi.org/10.1093/brain/awp032

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gass A, Rocca MA, Agosta F, Ciccarelli O, Chard D, Valsasina P, Brooks JC, Bischof A, Eisele P, Kappos L, Barkhof F, Filippi M, Group MS (2015) MRI monitoring of pathological changes in the spinal cord in patients with multiple sclerosis. Lancet Neurol 14(4):443–454. https://doi.org/10.1016/S1474-4422(14)70294-7

    Article  PubMed  Google Scholar 

  24. Dietz V (2002) Proprioception and locomotor disorders. Nat Rev Neurosci 3(10):781–790. https://doi.org/10.1038/nrn939

    Article  CAS  PubMed  Google Scholar 

  25. Forssberg H, Grillner S, Halbertsma J (1980) The locomotion of the low spinal cat. I. Coordination within a hindlimb. Acta Physiol Scand 108(3):269–281. https://doi.org/10.1111/j.1748-1716.1980.tb06533.x

    Article  CAS  PubMed  Google Scholar 

  26. Barbeau H, Rossignol S (1987) Recovery of locomotion after chronic spinalization in the adult cat. Brain Res 412(1):84–95. https://doi.org/10.1016/0006-8993(87)91442-9

    Article  CAS  PubMed  Google Scholar 

  27. Dietz V, Muller R, Colombo G (2002) Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain 125(Pt 12):2626–2634. https://doi.org/10.1093/brain/awf273

    Article  PubMed  Google Scholar 

  28. Pirko I, Lucchinetti CF, Sriram S, Bakshi R (2007) Gray matter involvement in multiple sclerosis. Neurology 68(9):634–642. https://doi.org/10.1212/01.wnl.0000250267.85698.7a

    Article  PubMed  Google Scholar 

  29. Calabrese M, Filippi M, Gallo P (2010) Cortical lesions in multiple sclerosis. Nat Rev Neurol 6(8):438–444. https://doi.org/10.1038/nrneurol.2010.93

    Article  PubMed  Google Scholar 

  30. Gilmore CP, Donaldson I, Bo L, Owens T, Lowe J, Evangelou N (2009) Regional variations in the extent and pattern of grey matter demyelination in multiple sclerosis: a comparison between the cerebral cortex, cerebellar cortex, deep grey matter nuclei and the spinal cord. J Neurol Neurosurg Psychiatry 80(2):182–187. https://doi.org/10.1136/jnnp.2008.148767

    Article  CAS  PubMed  Google Scholar 

  31. Gilmore CP, Geurts JJ, Evangelou N, Bot JC, van Schijndel RA, Pouwels PJ, Barkhof F, Bo L (2009) Spinal cord grey matter lesions in multiple sclerosis detected by post-mortem high field MR imaging. Mult Scler 15(2):180–188. https://doi.org/10.1177/1352458508096876

    Article  CAS  PubMed  Google Scholar 

  32. Dietz V (2001) Gait disorder in spasticity and Parkinson’s disease. Adv Neurol 87:143–154

    CAS  PubMed  Google Scholar 

  33. Mirbagheri MM, Barbeau H, Ladouceur M, Kearney RE (2001) Intrinsic and reflex stiffness in normal and spastic, spinal cord injured subjects. Exp Brain Res 141(4):446–459. https://doi.org/10.1007/s00221-001-0901-z

    Article  CAS  PubMed  Google Scholar 

  34. Pau M, Coghe G, Corona F, Marrosu MG, Cocco E (2015) Effect of spasticity on kinematics of gait and muscular activation in people with multiple sclerosis. J Neurol Sci 358(1–2):339–344. https://doi.org/10.1016/j.jns.2015.09.352

    Article  PubMed  Google Scholar 

  35. Sheean G, McGuire JR (2009) Spastic hypertonia and movement disorders: pathophysiology, clinical presentation, and quantification. PM R 1(9):827–833. https://doi.org/10.1016/j.pmrj.2009.08.002

    Article  PubMed  Google Scholar 

  36. Coghe G, Pau M, Corona F, Frau J, Lorefice L, Fenu G, Spinicci G, Mamusa E, Musu L, Massole S, Massa R, Marrosu MG, Cocco E (2015) Walking improvements with nabiximols in patients with multiple sclerosis. J Neurol 262(11):2472–2477. https://doi.org/10.1007/s00415-015-7866-5

    Article  CAS  PubMed  Google Scholar 

  37. Dillmann U, Holzhoffer C, Johann Y, Bechtel S, Graber S, Massing C, Spiegel J, Behnke S, Burmann J, Louis AK (2014) Principal component analysis of gait in Parkinson’s disease: relevance of gait velocity. Gait Post 39(3):882–887. https://doi.org/10.1016/j.gaitpost.2013.11.021

    Article  Google Scholar 

  38. Morris M, Iansek R, McGinley J, Matyas T, Huxham F (2005) Three-dimensional gait biomechanics in Parkinson’s disease: evidence for a centrally mediated amplitude regulation disorder. Movement Disord 20(1):40–50. https://doi.org/10.1002/mds.20278

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the individuals who participated in this study. The authors are grateful to Tabea Sutter, Sandra Kapitza and Katja Reuter for their assistance with subject recruitment and assessments. This study was supported by grants from the Betty and David Koetser Foundation, the Clinical Research Priority Program (CRPP) “NeuroRehab” of the University of Zurich, the Swiss MS Society, and Biogen.

Funding

This study was supported by grants from the Betty and David Koetser Foundation, the Clinical Research Priority Program (CRPP) “NeuroRehab” of the University of Zurich, the Swiss MS Society, and Biogen.

Author information

Authors and Affiliations

Authors

Contributions

DW, LF and BZ planed and designed the study, collected and analysed data, performed statistics, interpreted the data, produced figures, and prepared the manuscript. CM and LL collected and analysed data and CM produced figures. ML, MW, AC and BZ conceived and supervised the study and critically revised the manuscript.

Corresponding author

Correspondence to Björn Zörner.

Ethics declarations

Conflicts of interest

CM received a travel grant from Biogen. ML received grants, honoraria or funding from Almirall, Bayer, Biogen, Genzyme, Merck, Novartis, Roche and Teva. MW received research grants from Abbvie, Adastra, Bristol Meyer Squibb (BMS), Dracen, Merck, Sharp & Dohme (MSD), Merck (EMD), Novocure, Piqur and Roche, and honoraria for lectures or advisory board participation or consulting from Abbvie, Basilea, Bristol Meyer Squibb (BMS), Celgene, Merck, Sharp and Dohme (MSD), Merck (EMD), Novocure, Orbus, Roche and Tocagen. BZ received honoraria, travel grants, and funding from Biogen and Roche. The other authors declare that there is no conflict of interest.

Ethics approval

The studies were approved by the Zurich cantonal ethics committee (KEK-2011-0445, KEK-2014-0004) in Switzerland.

Consent to participate

All participants gave written, informed consent.

Consent for publication

All authors read and approved the final manuscript and gave consent for publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weller, D., Filli, L., Meyer, C. et al. Impaired speed-dependent modulation of the gait pattern in multiple sclerosis. J Neurol 267, 2998–3007 (2020). https://doi.org/10.1007/s00415-020-09965-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-020-09965-3

Keywords

Navigation