Skip to main content

Advertisement

Log in

Serum irisin is upregulated in patients affected by amyotrophic lateral sclerosis and correlates with functional and metabolic status

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Introduction

The progression of amyotrophic lateral sclerosis (ALS) leads to a decline of the nutritional status that represents an independent prognostic factor for survival. Recent studies recognize the muscle tissue as an endocrine organ able to release several molecules, called myokines. Among them, irisin seems to be involved in the regulation of metabolism, body weight and development and function of the nervous system.

Objectives

(1) To evaluate irisin serum levels in patients with ALS, with comparison to healthy subjects; (2) to assess the possible association of circulating irisin levels of ALS patients with the metabolic status, clinical and biochemical features.

Methods

We performed an observational, cross-sectional study in 50 ALS patients and 32 age- and sex-comparable healthy controls. Patients underwent to a complete set of neurological, pulmonary and nutritional evaluations. Serum irisin concentration was measured by enzyme immunoassay. According to indirect calorimetry, ALS patients were divided into a normo-metabolic patient group (n = 24) and a hyper-metabolic patient group (n = 26).

Results

ALS patients showed significantly higher serum irisin levels compared to healthy subjects (51.0 ± 37.8 vs 13.1 ± 2.2 ng/mL, p < 0.0001). Hyper-metabolic ALS patients displayed higher serum irisin levels compared to normo-metabolic ALS patients and healthy controls (p < 0.0009 and p < 0.0001, respectively). Serum irisin levels showed significant association with the ALSFRS-R (β=-1.18, p = 0.042), Forced Vital Capacity (β = − 0.64, p = 0.013), Fat Mass (β=-1.44, p = 0.034), pCO2 arterial blood levels (β = 2.67, p = 0.003), HCO3 arterial blood levels (β = 5.44, p = 0.001) and Free Fat Mass (β = 1.07, p = 0.025) adjusted for sex, age and metabolic status.

Conclusions

ALS patients with impaired metabolic status showed higher serum irisin levels compared to normo-metabolic ALS patients and healthy subjects. Irisin levels were also negatively correlated with the extent of functional and respiratory impairment, due to as yet unknown causes, being more elevated in patients with greater disability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kiernan MC, Vucic S, Cheah BC et al (2011) Amyotrophic lateral sclerosis. Lancet 377:942–955. https://doi.org/10.1016/S0140-6736(10)61156-7

    Article  CAS  PubMed  Google Scholar 

  2. Desport JC, Preux PM, Truong TC, Vallat JM, Sautereau D, Couratier P (1999) Nutritional status is a prognostic factor for survival in ALS patients. Neurology 53:1059–1063

    Article  CAS  PubMed  Google Scholar 

  3. Marin B, Desport JC, Kajeu P et al (2011) Alteration of nutritional status at diagnosis is a prognostic factor for survival of amyotrophic lateral sclerosis patients. J Neurol Neurosurg Psychiatry 82:628–634. https://doi.org/10.1136/jnnp.2010.211474

    Article  CAS  PubMed  Google Scholar 

  4. Bouteloup C, Desport JC, Clavelou P et al (2009) Hypermetabolism in ALS patients: an early and persistent phenomenon. J Neurol 256:1236–1242. https://doi.org/10.1007/s00415-009-5100-z

    Article  CAS  PubMed  Google Scholar 

  5. Desport JC, Preux PM, Magy L et al (2001) Factors correlated with hypermetabolism in patients with amyotrophic lateral sclerosis. Am J Clin Nutr 74:328–334

    Article  CAS  PubMed  Google Scholar 

  6. Desport JC, Torny F, Lacoste M, Preux PM, Couratier P (2005) Hypermetabolism in ALS: correlations with clinical and paraclinical parameters. Neurodegener Dis 2:202–207. https://doi.org/10.1159/000089626

    Article  PubMed  Google Scholar 

  7. Steyn FJ, Ioannides ZA, van Eijk RPA et al (2018) Hypermetabolism in ALS is associated with greater functional decline and shorter survival. J Neurol Neurosurg Psychiatry. https://doi.org/10.1136/jnnp-2017-317887

    Article  PubMed  Google Scholar 

  8. Jésus P, Fayemendy P, Nicol M et al (2018) Hypermetabolism is a deleterious prognostic factor in patients with amyotrophic lateral sclerosis. Eur J Neurol 25:97–104. https://doi.org/10.1111/ene.13468

    Article  PubMed  Google Scholar 

  9. Desport JC, Preux PM, Truong CT, Courat L, Vallat JM, Couratier P (2000) Nutritional assessment and survival in ALS patients. Amyotroph Lateral Scler Other Motor Neuron Disord 1:91–96

    Article  CAS  PubMed  Google Scholar 

  10. Febbraio MA, Pedersen BK (2005) Contraction-induced myokine production and release: is skeletal muscle an endocrine organ? Exerc Sport Sci Rev 33:114–119

    Article  PubMed  Google Scholar 

  11. Pedersen BK, Febbraio MA (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 8:457–465. https://doi.org/10.1038/nrendo.2012.49

    Article  CAS  PubMed  Google Scholar 

  12. Boström P, Wu J, Jedrychowski MP et al (2012) A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468. https://doi.org/10.1038/nature10777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brenmoehl J, Albrecht E, Komolka K et al (2014) Irisin is elevated in skeletal muscle and serum of mice immediately after acute exercise. Int J Biol Sci 10:338–349. https://doi.org/10.7150/ijbs.7972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huh JY, Siopi A, Mougios V, Park KH, Mantzoros CS (2015) Irisin in response to exercise in humans with and without metabolic syndrome. J Clin Endocrinol Metab 100:E453–E457. https://doi.org/10.1210/jc.2014-2416

    Article  CAS  PubMed  Google Scholar 

  15. Huh JY, Mougios V, Kabasakalis A et al (2014) Exercise-induced irisin secretion is independent of age or fitness level and increased irisin may directly modulate muscle metabolism through AMPK activation. J Clin Endocrinol Metab 99:E2154–E2161. https://doi.org/10.1210/jc.2014-1437

    Article  CAS  PubMed  Google Scholar 

  16. Norheim F, Langleite TM, Hjorth M et al (2014) The effects of acute and chronic exercise on PGC-1α, irisin and browning of subcutaneous adipose tissue in humans. FEBS J 281:739–749. https://doi.org/10.1111/febs.12619

    Article  CAS  PubMed  Google Scholar 

  17. Wrann CD, White JP, Salogiannnis J et al (2013) Exercise induces hippocampal BDNF through a PGC 1α/FNDC5 pathway. Cell Metab 18:649–659. https://doi.org/10.1016/j.cmet.2013.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang J, Zhang W (2016) Can irisin be a linker between physical activity and brainfunction? Biomol Concepts 7:253–258. https://doi.org/10.1515/bmc-2016-0012

    Article  CAS  PubMed  Google Scholar 

  19. Liu JJ, Wong MD, Toy WC et al. (20123) Lower circulating irisin is associated with type 2 diabetes mellitus. J Diabetes Complications 27:365–369. https://doi.org/10.1016/j.jdiacomp.2013.03.002

    Article  PubMed  Google Scholar 

  20. Pardo M, Crujeiras AB, Amil M et al (2014) Association of irisin with fat mass, resting energy expenditure, and daily activity in conditions of extreme body mass index. Int J Endocrinol 2014:857270. https://doi.org/10.1155/2014/857270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Andersen PM, Borasio GD, Dengler R et al (2005) EFNS task force on management of amyotrophic lateral sclerosis: guidelines for diagnosing and clinical care of patients and relatives. Eur J Neurol 12:921–938. https://doi.org/10.1111/j.1468-1331.2005.01351.x

    Article  CAS  PubMed  Google Scholar 

  22. Brooks BR, Miller RG, Swash M, Munsat TL (2000) World Federation of Neurology Research Group on Motor Neuron Diseases. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299

    Article  CAS  PubMed  Google Scholar 

  23. Cedarbaum JM, Stambler N, Malta E et al (1999) The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). J Neurol Sci 169:13–21

    Article  CAS  PubMed  Google Scholar 

  24. Harris JA, Benedict FG (1918) A Biometric Study of Basal Metabolism in Man. Proc Natl Acad Sci USA 4:370–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maldonado G, Greenland S (1993) Simulation study of confounder-selection strategies. Am J Epidemiol 138:923–936

    Article  CAS  PubMed  Google Scholar 

  26. Copper A, Weekes TJ (1983) Data, models, and statistical analysis, Rowman & Littlefield. ISBN: 0-389-20383-1, pp 50–51

  27. Mitsumoto H, Hanson MR, Chad DA (1988) Amyotrophic lateral sclerosis. Recent advances in pathogenesis and therapeutic trials. Arch Neurol 45:189–202

    Article  CAS  PubMed  Google Scholar 

  28. Zhang RZ, Gascon R, Miller RG et al (2005) Evidence for systemic immune system alterations in sporadic amyotrophic lateral sclerosis (sALS). J Neuroimmunol 159:215–224. https://doi.org/10.1016/j.jneuroim.2004.10.009

    Article  CAS  PubMed  Google Scholar 

  29. Appel SH (2006) Is ALS a systemic disorder? Evidence from muscle mitochondria. Exp Neurol 198:1–3. https://doi.org/10.1016/j.expneurol.2005.12.025

    Article  PubMed  Google Scholar 

  30. Wong M, Martin LJ (2010) Skeletal muscle-restricted expression of human SOD1 causes motor neuron degeneration in transgenic mice. Hum Mol Genet 19:2284–2302. https://doi.org/10.1093/hmg/ddq106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ehinger JK, Morota S, Hansson MJ, Paul G, Elmér E (2015) Mitochondrial dysfunction in blood cells from amyotrophic lateral sclerosis patients. J Neurol 262:1493–1503. https://doi.org/10.1007/s00415-015-7737-0

    Article  CAS  PubMed  Google Scholar 

  32. Dupuis L, Oudart H, Rene F, Gonzalez de Aguilar JL, Loeffl er JP (2004) Evidence for defective energy homeostasis in amyotrophic lateral sclerosis: benefit of a high-energy diet in a transgenic mouse model. Proc Natl Acad Sci USA 101:11159–11164. https://doi.org/10.1073/pnas.0402026101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Funalot B, Desport JC, Sturtz F, Camu W, Couratier P (2009) High metabolic level in patients with familial amyotrophic lateral sclerosis. Amyotroph Lateral Scler 10:113–117. https://doi.org/10.1080/17482960802295192

    Article  CAS  PubMed  Google Scholar 

  34. Vaisman N, Lusaus M, Nefussy B et al (2009) Do patients with amyotrophic lateral sclerosis (ALS) have increased energy needs? J Neurol Sci 279:26–29. https://doi.org/10.1016/j.jns.2008.12.027

    Article  PubMed  Google Scholar 

  35. Lacomblez L, Bensimon G, Leigh PN, Guillet P, Meininger V (1996) Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic lateral sclerosis/Riluzole Study Group II. Lancet 347:1425–1431

    Article  CAS  PubMed  Google Scholar 

  36. Wijesekera LC, Leigh PN (2009) Amyotrophic lateral sclerosis. Orphanet J Rare Dis 4:3. https://doi.org/10.1186/1750-1172-4-3

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kasarskis EJ, Berryman S, Vanderleest JG, Schneider AR, McClain CJ (1996) Nutritional status of patients with amyotrophic lateral sclerosis: relation to the proximity of death. Am J Clin Nutr 63:130–137

    Article  CAS  PubMed  Google Scholar 

  38. Chiang PM, Ling J, Jeong YH, Price DL, Aja SM, Wong PC (2010) Deletion of TDP-43 down-regulates Tbc1d1, a gene linked to obesity, and alters body fat metabolism. Proc Natl Acad Sci USA 107:16320–16324. https://doi.org/10.1073/pnas.1002176107

    Article  PubMed  PubMed Central  Google Scholar 

  39. Xu YF, Gendron TF, Zhang YJ et al (2010) Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice. J Neurosci 30:10851–10859. https://doi.org/10.1523/JNEUROSCI.1630-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Crugnola V, Lamperti C, Lucchini V et al (2010) Mitochondrial respiratory chain dysfunction in muscle from patients with amyotrophic lateral sclerosis. Arch Neurol 67:849–854. https://doi.org/10.1001/archneurol.2010.128

    Article  PubMed  Google Scholar 

  41. Echaniz-Laguna A, Zoll J, Ribera F et al (2002) Mitochondrial respiratory chain function in skeletal muscle of ALS patients. Ann Neurol 52:623–627. https://doi.org/10.1002/ana.10357

    Article  CAS  PubMed  Google Scholar 

  42. Echaniz-Laguna A, Zoll J, Ponsot E et al (2006) Muscular mitochondrial function in amyotrophic lateral sclerosis is progressively altered as the disease develops: a temporal study in man. Exp Neurol 198:25–30. https://doi.org/10.1016/j.expneurol.2005.07.020

    Article  CAS  PubMed  Google Scholar 

  43. Lanfranconi F, Ferri A, Corna G et al (2017) Inefficient skeletal muscle oxidative function flanks impaired motor neuron recruitment in Amyotrophic Lateral Sclerosis during exercise. Sci Rep 7:2951. https://doi.org/10.1038/s41598-017-02811-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhao W, Varghese M, Yemul S et al (2011) Peroxisome proliferator activator receptor gamma coactivator-1alpha (PGC-1a) improves motor performance and survival in a mouse model of amyotrophic lateral sclerosis. Mol Neurodegener 6:51. https://doi.org/10.1186/1750-1326-6-51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Da Cruz S, Parone PA, Lopes VS et al (2012) Elevated PGC-1 α activity sustains mitochondrial biogenesis and muscle function without extending survival in a mouse model of inherited ALS. Cell Metab 15:778–786. https://doi.org/10.1016/j.cmet.2012.03.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Aronis KN, Moreno M, Polyzos SA et al (2015) Circulating irisin levels and coronary heart disease: association with future acute coronary syndrome and major adverse cardiovascular events. Int J Obes (Lond) 39:156–161. https://doi.org/10.1038/ijo.2014.101

    Article  CAS  Google Scholar 

  47. Lopez-Legarrea P, De La Iglesia R, Crejeiras AB et al (2014) Higher baseline irisin concentrations are associated with greater reductions in glycemia and insulinemia af- ter weight loss in obese subjects. Nutr Diabetes 4:e110. https://doi.org/10.1038/nutd.2014.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gannon NP, Vaughan RA, Garcia-Smith R, Bisoffi M, Trujillo KA (2015) Effects of the exercise-inducible myokine irisin on malignant and non-malignant breast epithelial cell behavior in vitro. Int J Cancer 136:E197–E202. https://doi.org/10.1002/ijc.29142

    Article  CAS  PubMed  Google Scholar 

  49. Ebert T, Focke D, Petroff D et al (2014) Serum levels of the myokine irisin in relation to metabolic and renal function. Eur J Endocrinol 170:501–506. https://doi.org/10.1530/EJE-13-1053

    Article  CAS  PubMed  Google Scholar 

  50. Phillips C, Baktir MA, Srivatsan M, Salehi A (2014) Neuroprotective effects of physical activity on the brain: a closer look at trophic factor signaling. Front Cell Neurosci 8:170. https://doi.org/10.3389/fncel.2014.00170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tremolizzo L, Pellegrini A, Conti E et al (2016) BDNF serum levels with respect to multidimensional assessment in amyotrophic lateral sclerosis. Neurodegener Dis 16:192–198. https://doi.org/10.1159/000441916

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our patients and their caregivers for their support of our study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Lunetta.

Ethics declarations

Conflicts of interest

The authors declare no financial support for the conduct of the study. Dr Lunetta served on a scientific advisory board for Neuraltus and Italfarmaco and has received funds from Agenzia Italiana per la Ricerca sulla SLA (ARISLA) and Ministry of Health (CCM2011). The other authors report no conflicts of interest.

Ethical standards

The study has been approved by our Ethics Committee. All data were gathered after informed consent was obtained from each participant, in accordance with specific national laws and the ethics standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lunetta, C., Lizio, A., Tremolizzo, L. et al. Serum irisin is upregulated in patients affected by amyotrophic lateral sclerosis and correlates with functional and metabolic status. J Neurol 265, 3001–3008 (2018). https://doi.org/10.1007/s00415-018-9093-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-018-9093-3

Keywords

Navigation