Skip to main content
Log in

Kinesin-5 Eg5 mediates centrosome separation to control spindle assembly in spermatocytes

  • Original Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Timely and accurate centrosome separation is critical for bipolar spindle organization and faithful chromosome segregation during cell division. Kinesin-5 Eg5 is essential for centrosome separation and spindle organization in somatic cells; however, the detailed functions and mechanisms of Eg5 in spermatocytes remain unclear. In this study, we show that Eg5 proteins are located at spindle microtubules and centrosomes in spermatocytes both in vivo and in vitro. We reveal that the spermatocytes are arrested at metaphase I in seminiferous tubules after Eg5 inhibition. Eg5 ablation results in cell cycle arrest, the formation of monopolar spindle, and chromosome misalignment in cultured GC-2 spd cells. Importantly, we find that the long-term inhibition of Eg5 results in an increased number of centrosomes and chromosomal instability in spermatocytes. Our findings indicate that Eg5 mediates centrosome separation to control spindle assembly and chromosome alignment in spermatocytes, which finally contribute to chromosome stability and faithful cell division of the spermatocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Agircan FG, Schiebel E, Mardin BR (2014) Separate to operate: control of centrosome positioning and separation. Philos Trans R Soc Lond B Biol Sci 369:20130461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Asraf H, Avunie-Masala R, Hershfinkel M, Gheber L (2015) Mitotic slippage and expression of survivin are linked to differential sensitivity of human cancer cell-lines to the Kinesin-5 inhibitor monastrol. PLoS One 10:e0129255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blackwell R, Edelmaier C, Sweezy-Schindler O, Lamson A, Gergely ZR, O’Toole E, Crapo A, Hough LE, McIntosh JR, Glaser MA et al (2017) Physical determinants of bipolar mitotic spindle assembly and stability in fission yeast. Sci Adv 3:e1601603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blangy A, Lane HA, d’Hérin P, Harper M, Kress M, Nigg EA (1995) Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83:1159–1169

    Article  CAS  PubMed  Google Scholar 

  • Bornens M (2002) Centrosome composition and microtubule anchoring mechanisms. Curr Opin Cell Biol 14:25–34

    Article  CAS  PubMed  Google Scholar 

  • Brier S, Lemaire D, Debonis S, Forest E, Kozielski F (2004) Identification of the protein binding region of S-trityl-L-cysteine, a new potent inhibitor of the mitotic kinesin Eg5. Biochemistry 43:13072–13082

    Article  CAS  PubMed  Google Scholar 

  • Brust-Mascher I, Sommi P, Cheerambathur DK, Scholey JM (2009) Kinesin-5-dependent poleward flux and spindle length control in Drosophila embryo mitosis. Mol Biol Cell 20:1749–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron LA, Yang G, Cimini D, Canman JC, Kisurina-Evgenieva O, Khodjakov A, Danuser G, Salmon ED (2006) Kinesin 5-independent poleward flux of kinetochore microtubules in PtK1 cells. J Cell Biol 173:173–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo A, Justice MJ (2007) The kinesin related motor protein, Eg5, is essential for maintenance of pre-implantation embryogenesis. Biochem Biophys Res Commun 357:694–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauvière M, Kress C, Kress M (2008) Disruption of the mitotic kinesin Eg5 gene (Knsl1) results in early embryonic lethality. Biochem Biophys Res Commun 372:513–519

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Connell M, Mei L, Reid GSD, Maxwell CA (2018) The nonmotor adaptor HMMR dampens Eg5-mediated forces to preserve the kinetics and integrity of chromosome segregation. Mol Biol Cell 29:786–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Fok KL, Jiang X, Jiang J, Chen Z, Gui Y, Chan HC, Cai Z (2012) CD147 regulates apoptosis in mouse spermatocytes but not spermatogonia. Hum Reprod 27:1568–1576

    Article  PubMed  CAS  Google Scholar 

  • Chimento A, Sirianni R, Casaburi I, Ruggiero C, Maggiolini M, Andò S, Pezzi V (2012) 17β-Estradiol activates GPER- and ESR1-dependent pathways inducing apoptosis in GC-2 cells, a mouse spermatocyte-derived cell line. Mol Cell Endocrinol 355:49–59

    Article  CAS  PubMed  Google Scholar 

  • Collins E, Mann BJ, Wadsworth P (2014) Eg5 restricts anaphase B spindle elongation in mammalian cells. Cytoskeleton (Hoboken) 71:136–144

    Article  CAS  Google Scholar 

  • Costa MFA, Ohkura H (2019) The molecular architecture of the meiotic spindle is remodeled during metaphase arrest in oocytes. J Cell Biol 218:2854–2864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeBonis S, Skoufias DA, Lebeau L, Lopez R, Robin G, Margolis RL, Wade RH, Kozielski F (2004) In vitro screening for inhibitors of the human mitotic kinesin Eg5 with antimitotic and antitumor activities. Mol Cancer Ther 3:1079–1090

    CAS  PubMed  Google Scholar 

  • Ferenz NP, Gable A, Wadsworth P (2010) Mitotic functions of kinesin-5. Semin Cell Dev Biol 21:255–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferenz NP, Paul R, Fagerstrom C, Mogilner A, Wadsworth P (2009) Dynein antagonizes eg5 by crosslinking and sliding antiparallel microtubules. Curr Biol 19:1833–1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fink G, Hajdo L, Skowronek KJ, Reuther C, Kasprzak AA, Diez S (2009) The mitotic kinesin-14 Ncd drives directional microtubule-microtubule sliding. Nat Cell Biol 11:717–723

    Article  CAS  PubMed  Google Scholar 

  • Fridman V, Gerson-Gurwitz A, Shapira O, Movshovich N, Lakämper S, Schmidt CF, Gheber L (2013) Kinesin-5 Kip1 is a bi-directional motor that stabilizes microtubules and tracks their plus-ends in vivo. J Cell Sci 126:4147–4159

    CAS  PubMed  Google Scholar 

  • Ganem NJ, Storchova Z, Pellman D (2007) Tetraploidy, aneuploidy and cancer. Curr Opin Genet Dev 17:157–162

    Article  CAS  PubMed  Google Scholar 

  • Gardner MK, Bouck DC, Paliulis LV, Meehl JB, O’Toole ET, Haase J, Soubry A, Joglekar AP, Winey M, Salmon ED et al (2008) Chromosome congression by Kinesin-5 motor-mediated disassembly of longer kinetochore microtubules. Cell 135:894–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gartner M, Sunder-Plassmann N, Seiler J, Utz M, Vernos I, Surrey T, Giannis A (2005) Development and biological evaluation of potent and specific inhibitors of mitotic Kinesin Eg5. ChemBioChem 6:1173–1177

    Article  CAS  PubMed  Google Scholar 

  • Gayek AS, Ohi R (2014) Kinetochore-microtubule stability governs the metaphase requirement for Eg5. Mol Biol Cell 25:2051–2060

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerson-Gurwitz A, Movshovich N, Avunie R, Fridman V, Moyal K, Katz B, Hoyt MA, Gheber L (2009) Mid-anaphase arrest in S. cerevisiae cells eliminated for the function of Cin8 and dynein. Cell Mol Life Sci 66:301–313

    Article  CAS  PubMed  Google Scholar 

  • Godinho SA (2014) Centrosome amplification and cancer: branching out. Mol Cell Oncol 2:e993252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hara-Yokoyama M, Kurihara H, Ichinose S, Matsuda H, Ichinose S, Kurosawa M, Tada N, Iwahara C, Terasawa K, Podyma-Inoue KA et al (2019) KIF11 as a potential marker of spermatogenesis within mouse seminiferous tubule cross-sections. J Histochem Cytochem 67:813–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto K, Chinen T, Kitagawa D (2020) Mechanisms of spindle bipolarity establishment in acentrosomal human cells. Mol Cell Oncol 7:1743899

    Article  PubMed  PubMed Central  Google Scholar 

  • Heck MM, Pereira A, Pesavento P, Yannoni Y, Spradling AC, Goldstein LS (1993) The kinesin-like protein KLP61F is essential for mitosis in Drosophila. J Cell Biol 123:665–679

    Article  CAS  PubMed  Google Scholar 

  • Hentrich C, Surrey T (2010) Microtubule organization by the antagonistic mitotic motors kinesin-5 and kinesin-14. J Cell Biol 189:465–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofmann MC, Abramian D, Millán JL (1995) A haploid and a diploid cell coexist in an in vitro immortalized spermatogenic cell line. Dev Genet 16:119–127

    Article  CAS  PubMed  Google Scholar 

  • Hofmann MC, Hess RA, Goldberg E, Millán JL (1994) Immortalized germ cells undergo meiosis in vitro. Proc Natl Acad Sci U S A 91:5533–5537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwakiri Y, Kamakura S, Hayase J, Sumimoto H (2013) Interaction of NuMA protein with the kinesin Eg5: its possible role in bipolar spindle assembly and chromosome alignment. Biochem J 451:195–204

    Article  CAS  PubMed  Google Scholar 

  • Kaan HY, Ulaganathan V, Hackney DD, Kozielski F (2009) An allosteric transition trapped in an intermediate state of a new kinesin-inhibitor complex. Biochem J 425:55–60

    Article  PubMed  CAS  Google Scholar 

  • Kapitein LC, Peterman EJ, Kwok BH, Kim JH, Kapoor TM, Schmidt CF (2005) The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature 435:114–118

    Article  CAS  PubMed  Google Scholar 

  • Kapoor TM, Mayer TU, Coughlin ML, Mitchison TJ (2000) Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5. J Cell Biol 150:975–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashina AS, Rogers GC, Scholey JM (1997) The bimC family of kinesins: essential bipolar mitotic motors driving centrosome separation. Biochim Biophys Acta 1357:257–271

    Article  CAS  PubMed  Google Scholar 

  • Kashina AS, Scholey JM, Leszyk JD, Saxton WM (1996) An essential bipolar mitotic motor. Nature 384:225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovacovicova K, Awadova T, Mikel P, Anger M (2016) In vitro maturation of mouse oocytes increases the level of Kif11/Eg5 on meiosis II spindles. Biol Reprod 95:18

    Article  PubMed  CAS  Google Scholar 

  • Leblond CP, Clermont Y (1952a) Definition of the stages of the cycle of the seminiferous epithelium in the rat. Ann N Y Acad Sci 55:548–573

    Article  CAS  PubMed  Google Scholar 

  • Leblond CP, Clermont Y (1952b) Spermiogenesis of rat, mouse, hamster and guinea pig as revealed by the periodic acid-fuchsin sulfurous acid technique. Am J Anat 90:167–215

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Li D, Sun L, Chen J, Sun X, Zhang L, Huo L, Zhou J (2014) Modulation of Eg5 activity contributes to mitotic spindle checkpoint activation and Tat-mediated apoptosis in CD4-positive T-lymphocytes. J Pathol 233:138–147

    Article  CAS  PubMed  Google Scholar 

  • Ma N, Titus J, Gable A, Ross JL, Wadsworth P (2011) TPX2 regulates the localization and activity of Eg5 in the mammalian mitotic spindle. J Cell Biol 195:87–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mann BJ, Wadsworth P (2019) Kinesin-5 regulation and function in mitosis. Trends Cell Biol 29:66–79

    Article  CAS  PubMed  Google Scholar 

  • Mayer TU, Kapoor TM, Haggarty SJ, King RW, Schreiber SL, Mitchison TJ (1999) Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286:971–974

    Article  CAS  PubMed  Google Scholar 

  • McCoy KM, Tubman ES, Claas A, Tank D, Clancy SA, O’Toole ET, Berman J, Odde DJ (2015) Physical limits on kinesin-5-mediated chromosome congression in the smallest mitotic spindles. Mol Biol Cell 26:3999–4014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Movshovich N, Fridman V, Gerson-Gurwitz A, Shumacher I, Gertsberg I, Fich A, Hoyt MA, Katz B, Gheber L (2008) Slk19-dependent mid-anaphase pause in kinesin-5-mutated cells. J Cell Sci 121:2529–2539

    Article  CAS  PubMed  Google Scholar 

  • Novak M, Polak B, Simunić J, Boban Z, Kuzmić B, Thomae AW, Tolić IM, Pavin N (2018) The mitotic spindle is chiral due to torques within microtubule bundles. Nat Commun 9:3571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohashi A (2015) Different cell fates after mitotic slippage: from aneuploidy to polyploidy. Mol Cell Oncol 3:e1088503

    Article  PubMed  PubMed Central  Google Scholar 

  • Raaijmakers JA, van Heesbeen RG, Meaders JL, Geers EF, Fernandez-Garcia B, Medema RH, Tanenbaum ME (2012) Nuclear envelope-associated dynein drives prophase centrosome separation and enables Eg5-independent bipolar spindle formation. EMBO J 31:4179–4190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rincon SA, Lamson A, Blackwell R, Syrovatkina V, Fraisier V, Paoletti A, Betterton MD, Tran PT (2017) Kinesin-5-independent mitotic spindle assembly requires the antiparallel microtubule crosslinker Ase1 in fission yeast. Nat Commu 8:15286

    Article  CAS  Google Scholar 

  • Roostalu J, Hentrich C, Bieling P, Telley IA, Schiebel E, Surrey T (2011) Directional switching of the kinesin Cin8 through motor coupling. Science 332:94–99

    Article  CAS  PubMed  Google Scholar 

  • Rozelle DK, Hansen SD, Kaplan KB (2011) Chromosome passenger complexes control anaphase duration and spindle elongation via a kinesin-5 brake. J Cell Biol 193:285–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell LD, Ettlin RA, Hikim APS, Clegg ED (1990) Histological and histopathological evaluation of the testis. Cache River Press, Florida, pp 119–162

    Google Scholar 

  • Saunders AM, Powers J, Strome S, Saxton WM (2007) Kinesin-5 acts as a brake in anaphase spindle elongation. Curr Biol 17:R453–R454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders WS, Hoyt MA (1992) Kinesin-related proteins required for structural integrity of the mitotic spindle. Cell 70:451–458

    Article  CAS  PubMed  Google Scholar 

  • Sawin KE, LeGuellec K, Philippe M, Mitchison TJ (1992) Mitotic spindle organization by a plus-end-directed microtubule motor. Nature 359:540–543

    Article  CAS  PubMed  Google Scholar 

  • Scholey JE, Nithianantham S, Scholey JM, Al-Bassam J (2014) Structural basis for the assembly of the mitotic motor Kinesin-5 into bipolar tetramers. Elife 3:e02217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scholey JM, Civelekoglu-Scholey G, Brust-Mascher I (2016) Anaphase B. Biology (Basel) 5:51

    Google Scholar 

  • Shapira O, Goldstein A, Al-Bassam J, Gheber L (2017) A potential physiological role for bi-directional motility and motor clustering of mitotic kinesin-5 Cin8 in yeast mitosis. J Cell Sci 130:725–734

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp DJ, McDonald KL, Brown HM, Matthies HJ, Walczak C, Vale RD, Mitchison TJ, Scholey JM (1999) The bipolar kinesin, KLP61F, cross-links microtubules within interpolar microtubule bundles of Drosophila embryonic mitotic spindles. J Cell Biol 144:125–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • She ZY, Yang WX (2017) Molecular mechanisms of kinesin-14 motors in spindle assembly and chromosome segregation. J Cell Sci 130:2097–2110

    Article  CAS  PubMed  Google Scholar 

  • She ZY, Zhong N, Yu KW, Xiao Y, Wei YL, Lin Y, Li YL, Lu MH (2020) Kinesin-5 Eg5 is essential for spindle assembly and chromosome alignment of mouse spermatocytes. Cell Div 15:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimamoto Y, Forth S, Kapoor TM (2015) Measuring pushing and braking forces generated by ensembles of Kinesin-5 crosslinking two microtubules. Dev Cell 34:669–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu M, Ishii H, Ogo N, Matsuno K, Asai A (2010) Biochemical analysis of cellular target of S-trityl-L-cysteine derivatives using affinity matrix. Bioorg Med Chem Lett 20:1578–1580

    Article  CAS  PubMed  Google Scholar 

  • Shu S, Iimori M, Wakasa T, Ando K, Saeki H, Oda Y, Oki E, Maehara Y (2019) The balance of forces generated by kinesins controls spindle polarity and chromosomal heterogeneity in tetraploid cells. J Cell Sci 132:jcs231530

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Pandey H, Al-Bassam J, Gheber L (2018) Bidirectional motility of kinesin-5 motor proteins: structural determinants, cumulative functions and physiological roles. Cell Mol Life Sci 75:1757–1771

    Article  CAS  PubMed  Google Scholar 

  • Skoufias DA, DeBonis S, Saoudi Y, Lebeau L, Crevel I, Cross R, Wade RH, Hackney D, Kozielski F (2006) S-trityl-L-cysteine is a reversible, tight binding inhibitor of the human kinesin Eg5 that specifically blocks mitotic progression. J Biol Chem 281:17559–17569

    Article  CAS  PubMed  Google Scholar 

  • Stiff T, Echegaray-Iturra FR, Pink HJ, Herbert A, Reyes-Aldasoro CC, Hochegger H (2020) Prophase-specific perinuclear actin coordinates centrosome separation and positioning to ensure accurate chromosome segregation. Cell Rep 31:107681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sturgill EG, Norris SR, Guo Y, Ohi R (2016) Kinesin-5 inhibitor resistance is driven by kinesin-12. J Cell Biol 213:213–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sturgill EG, Ohi R (2013) Kinesin-12 differentially affects spindle assembly depending on its microtubule substrate. Curr Biol 23:1280–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi J, Sakamoto R, Shiratsuchi G, Maeda YT, Shimamoto Y (2019) Mechanically distinct microtubule arrays determine the length and force response of the meiotic spindle. Dev Cell 49:267-278.e5

    Article  CAS  PubMed  Google Scholar 

  • Tan R, Foster PJ, Needleman DJ, McKenney RJ (2018) Cooperative accumulation of dynein-dynactin at microtubule minus-ends drives microtubule network reorganization. Dev Cell 44:233-247.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanenbaum ME, Macůrek L, Janssen A, Geers EF, Alvarez-Fernández M, Medema RH (2009) Kif15 cooperates with eg5 to promote bipolar spindle assembly. Curr Biol 19:1703–1711

    Article  CAS  PubMed  Google Scholar 

  • Tanenbaum ME, Medema RH (2010) Mechanisms of centrosome separation and bipolar spindle assembly. Dev Cell 19:797–806

    Article  CAS  PubMed  Google Scholar 

  • Tikhonenko I, Nag DK, Martin N, Koonce MP (2008) Kinesin-5 is not essential for mitotic spindle elongation in Dictyostelium. Cell Motil Cytoskeleton 65:853–862

    Article  CAS  PubMed  Google Scholar 

  • Tubman E, He Y, Hays TS, Odde DJ (2018) Kinesin-5 mediated chromosome congression in insect spindles. Cell Mol Bioeng 11:25–36

    Article  PubMed  Google Scholar 

  • van Heesbeen RG, Tanenbaum ME, Medema RH (2014) Balanced activity of three mitotic motors is required for bipolar spindle assembly and chromosome segregation. Cell Rep 8:948–956

    Article  PubMed  CAS  Google Scholar 

  • Vanneste D, Takagi M, Imamoto N, Vernos I (2009) The role of Hklp2 in the stabilization and maintenance of spindle bipolarity. Curr Biol 19:1712–1717

    Article  CAS  PubMed  Google Scholar 

  • Vladimirou E, Mchedlishvili N, Gasic I, Armond JW, Samora CP, Meraldi P, McAinsh AD (2013) Nonautonomous movement of chromosomes in mitosis. Dev Cell 27:60–71

    Article  CAS  PubMed  Google Scholar 

  • Wan X, Zhang Y, Lan M, Pan MH, Tang F, Zhang HL, Ou XH, Sun SC (2018) Meiotic arrest and spindle defects are associated with altered KIF11 expression in porcine oocytes. Environ Mol Mutagen 59:805–812

    Article  CAS  PubMed  Google Scholar 

  • Wilson PG, Simmons R, Saighal S (2004) Novel nuclear defects in KLP61F-deficient mutants in Drosophila are partially suppressed by loss of Ncd function. J Cell Sci 117:4921–4933

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Cheng M, Lu S, Yuan Q, Yang D, Chen Y, Pan C, Qiu Y, Xiong B (2018) Eg5 orchestrates porcine oocyte maturational progression by maintaining meiotic organelle arrangement. Cell Div 13:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yount AL, Zong H, Walczak CE (2015) Regulatory mechanisms that control mitotic kinesins. Exp Cell Res 334:70–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yukawa M, Yamada Y, Toda T (2019) Suppressor analysis uncovers that MAPs and microtubule dynamics balance with the Cut7/Kinesin-5 motor for mitotic spindle assembly in Schizosaccharomyces pombe. G3 (Bethesda) 9:269–280

    Article  CAS  Google Scholar 

  • Zhang J, Liu J, Ren L, Wei J, Zhang F, Li Y, Guo C, Duan J, Sun Z, Zhou X (2018) Silica nanoparticles induce abnormal mitosis and apoptosis via PKC-δ mediated negative signaling pathway in GC-2 cells of mice. Chemosphere 208:942–950

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the members of the Cytoskeleton Laboratory at Fujian Medical University for helpful discussions. We thank Jun-Jin Lin, Ming-Xia Wu, and Lin-Ying Zhou at Public Technology Service Center, Fujian Medical University, for their technical assistance.

Funding

This study was supported by the following grants: National Natural Science Foundation of China (grant number 82001608), Natural Science Foundation of Fujian Province, China (grant number 2019J05071), Fujian Provincial Health Technology Project (grant number 2018–1-69 and 2020QNB009), Startup Fund for scientific research, Fujian Medical University (grant number 2017XQ1001), Fujian Medical University high-level talents scientific research start-up funding project (grant number XRCZX2017025), and Research project of online education and teaching of Chinese medicine graduate students (grant number B-YXC20200202-06).

Author information

Authors and Affiliations

Authors

Contributions

ZYS: conceptualization; data curation; formal analysis; funding acquisition; investigation; methodology; project administration; resources; software; supervision; validation; visualization; roles/writing—original draft; writing—review and editing. NZ: data curation; formal analysis; software; validation; visualization; roles/writing—original draft. YLW: formal analysis; visualization; roles/writing—original draft.

Corresponding author

Correspondence to Zhen-Yu She.

Ethics declarations

Ethics approval

All procedures performed in the studies involving animals were approved by the Animal Care and Use Committee at Fujian Medical University, China (permit number SYXK2016-0007).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14458 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

She, ZY., Zhong, N. & Wei, YL. Kinesin-5 Eg5 mediates centrosome separation to control spindle assembly in spermatocytes. Chromosoma 131, 87–105 (2022). https://doi.org/10.1007/s00412-022-00772-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-022-00772-5

Keywords

Navigation