Skip to main content
Log in

Tethering of SUUR and HP1 proteins results in delayed replication of euchromatic regions in Drosophila melanogaster polytene chromosomes

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

We analyze how artificial targeting of Suppressor of Under-Replication (SUUR) and HP1 proteins affects DNA replication in the “open,” euchromatic regions. Normally these regions replicate early in the S phase and display no binding of either SUUR or HP1. These proteins were expressed as fusions with DNA-binding domain of GAL4 and recruited to multimerized UAS integrated in three euchromatic sites of the polytene X chromosome: 3B, 8D, and 18B. Using PCNA staining as a marker of ongoing replication, we showed that targeting of SUURGAL4DBD and HP1GAL4DBD results in delayed replication of appropriate euchromatic regions. Specifically, replication at these regions starts early, much like in the absence of the fusion proteins; however, replication completion is significantly delayed. Notably, delayed replication was insufficient to induce underreplication. Recruitment of SUURGAL4DBD and HP1GAL4DBD had distinct effects on expression of a mini-white reporter, found near UAS. Whereas SUURGAL4DBD had no measurable influence on mini-white expression, HP1GAL4DBD targeting silenced mini-white, even in the absence of functional SU(VAR)3-9. Furthermore, recruitment of SUURGAL4DBD and HP1GAL4DBD had distinct effects on the protein composition of target regions. HP1GAL4DBD but not SUURGAL4DBD could displace an open chromatin marker, CHRIZ, from the tethering sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bell O, Schwaiger M, Oakeley EJ, Lienert F, Beisel C, Stadler MB, Schübeler D (2010) Accessibility of the Drosophila genome discriminates PcG repression, H4K16 acetylation and replication timing. Nat Struct Mol Biol 17:894–900

    Article  CAS  PubMed  Google Scholar 

  • Bellen HJ, Levis RW, He Y, Carlson JW, Evans-Holm M, Bae E, Kim J, Metaxakis A, Savakis C, Schulze KL, Hoskins RA, Spradling AC (2011) The Drosophila gene disruption project: progress using transposons with distinctive site specificities. Genetics 188:731–743

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Belyaeva ES, Zhimulev IF, Volkova EI, Alekseyenko AA, Moshkin YM, Koryakov DE (1998) Su(UR)ES: a gene suppressing DNA underreplication in intercalary and pericentric heterochromatin of Drosophila melanogaster polytene chromosomes. Proc Natl Acad Sci USA 95:7532–7537

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Belyaeva ES, Andreyeva EN, Belyakin SN, Volkova EI, Zhimulev IF (2008) Intercalary heterochromatin in polytene chromosomes of Drosophila melanogaster. Chromosoma 117:411–418

    Article  CAS  PubMed  Google Scholar 

  • Belyaeva ES, Goncharov FP, Demakova OV, Kolesnikova TD, Boldyreva LV, Semeshin VF, Zhimulev IF (2012) Late replication domains in polytene and non-polytene cells of Drosophila melanogaster. PLoS One 7(1):e30035

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    CAS  PubMed  Google Scholar 

  • Bridges C (1935) Salivary chromosome map with a key to the banding of the chromosomes of Drosophila melanogaster. J Hered 26:60–64

    Google Scholar 

  • Casas-Delucchi CS, Cardoso MC (2011) Epigenetic control of DNA replication dynamics in mammals. Nucleus 2:370–382

    Article  PubMed  Google Scholar 

  • Celniker SE, Dillon LA, Gerstein MB, Gunsalus KC, Henikoff S, Karpen GH, Kellis M, Lai EC, Lieb JD, MacAlpine DM, Micklem G, Piano F, Snyder M, Stein L, White KP, Waterston RH, modENCODE Consortium (2009) Unlocking the secrets of the genome. Nature 459:927–930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Danzer JR, Wallrath LL (2004) Mechanisms of HP1-mediated gene silencing in Drosophila. Development 131:3571–3580

    Article  CAS  PubMed  Google Scholar 

  • de Wit E, Greil F, van Steensel B (2005) Genome-wide HP1 binding in Drosophila: developmental plasticity and genomic targeting signals. Genome Res 15:1265–1273

    Article  PubMed Central  PubMed  Google Scholar 

  • Demakova OV, Pokholkova GV, Kolesnikova TD, Demakov SA, Andreyeva EN, Belyaeva ES, Zhimulev IF (2007) The SU(VAR)3-9/HP1 complex differentially regulates the compaction state and degree of underreplication of X chromosome pericentric heterochromatin in Drosophila melanogaster. Genetics 175:609–620

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Donaldson AD (2005) Shaping time: chromatin structure and the DNA replication programme. Trends Genet 21:444–449

    Article  CAS  PubMed  Google Scholar 

  • Eaton ML, Prinz JA, MacAlpine HK, Tretyakov G, Kharchenko PV, MacAlpine DM (2011) Chromatin signatures of the Drosophila replication program. Genome Res 21:164–174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Filion GJ, van Bemmel JG, Braunschweig U, Talhout W, Kind J, Ward LD, Brugman W, de Castro IJ, Kerkhoven RM, Bussemaker HJ, van Steensel B (2010) Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell 143:212–224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gibert JM, Karch F (2011) The Polycomb group protein CRAMPED is involved with TRF2 in the activation of the histone H1 gene. Chromosoma 120:297–307

    Article  CAS  PubMed  Google Scholar 

  • Gilbert DM, Takebayashi SI, Ryba T, Lu J, Pope BD, Wilson KA, Hiratani I (2010) Space and time in the nucleus: developmental control of replication timing and chromosome architecture. Cold Spring Harb Symp Quant Biol 75:143–153

    Article  CAS  PubMed  Google Scholar 

  • Gortchakov AA, Eggert H, Gan M, Mattow J, Zhimulev IF, Saumweber H (2005) Chriz, a chromodomain protein specific for the interbands of Drosophila melanogaster polytene chromosomes. Chromosoma 114:54–66

    Article  CAS  PubMed  Google Scholar 

  • Greil F, van der Kraan I, Delrow J, Smothers JF, de Wit E, Bussemaker HJ, van Driel R, Henikoff S, van Steensel B (2003) Distinct HP1 and Su(var)3-9 complexes bind to sets of developmentally coexpressed genes depending on chromosomal location. Genes Dev 17:2825–2838

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hansen KH, Bracken AP, Pasini D, Dietrich N, Gehani SS, Monrad A, Rappsilber J, Lerdrup M, Helin K (2008) A model for transmission of the H3K27me3 epigenetic mark. Nat Cell Biol 10:1291–1300

    Article  CAS  PubMed  Google Scholar 

  • Hayashi MT, Masukata H (2011) Regulation of DNA replication by chromatin structures: accessibility and recruitment. Chromosoma 120:39–46

    Article  CAS  PubMed  Google Scholar 

  • Hiratani I, Gilbert DM (2009) Replication timing as an epigenetic mark. Epigenetics 4:93–97

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hummel T, Klämbt C (2008) P-element mutagenesis. Methods Mol Biol 420:97–117

    CAS  PubMed  Google Scholar 

  • James TC, Eissenberg JC, Craig C, Dietrich V, Hobson A, Elgin SC (1989) Distribution patterns of HP1, a heterochromatin-associated nonhistone chromosomal protein of Drosophila. Eur J Cell Biol 50:170–180

    CAS  PubMed  Google Scholar 

  • Karnani N, Taylor CM, Malhotra A, Dutta A (2010) Genomic study of replication initiation in human chromosomes reveals the influence of transcription regulation and chromatin structure on origin selection. Mol Biol Cell 21:393–404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaufmann BP (1939) Distribution of induced breaks along the Xchromosome of Drosophila melanogaster. Proc Natl Acad Sci USA 25:571–577

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kolesnikova TD, Posukh OV, Andreyeva EN, Bebyakina DS, Ivankin AV, Zhimulev IF (2013) Drosophila SUUR protein associates with PCNA and binds chromatin in a cell cycle-dependent manner. Chromosoma 122:55–66

    Article  CAS  PubMed  Google Scholar 

  • Koryakov DE, Walther M, Ebert A, Lein S, Zhimulev IF, Reuter G (2011) The SUUR protein is involved in binding of SU(VAR)3-9 and methylation of H3K9 and H3K27 in chromosomes of Drosophila melanogaster. Chromosom Res 19:235–249

    Article  CAS  Google Scholar 

  • Li Y, Danzer JR, Alvarez P, Belmont AS, Wallrath LL (2003) Effects of tethering HP1 to euchromatic regions of the Drosophila genome. Development 130:1817–1824

    Article  CAS  PubMed  Google Scholar 

  • MacAlpine HK, Gordan R, Powell SK, Hartemink AJ, MacAlpine DM (2010) Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading. Genome Res 20:201–211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maison C, Almouzni G (2004) HP1 and the dynamics of heterochromatin maintenance. Nat Rev Mol Cell Biol 5:296–304

    Article  CAS  PubMed  Google Scholar 

  • Makunin IV, Volkova EI, Belyaeva ES, Nabirochkina EN, Pirrotta V, Zhimulev IF (2002) The Drosophila suppressor of underreplication protein binds to late-replicating regions of polytene chromosomes. Genetics 160:1023–1034

    PubMed Central  CAS  PubMed  Google Scholar 

  • Masai H, Matsumoto S, You Z, Yoshizawa-Sugata N, Oda M (2010) Eukaryotic chromosome DNA replication: where, when, and how? Annu Rev Biochem 79:89–130

    Article  CAS  PubMed  Google Scholar 

  • Moldovan GL, Pfander B, Jentsch S (2007) PCNA, the maestro of the replication fork. Cell 129:665–679

    Article  CAS  PubMed  Google Scholar 

  • Pan T, Coleman JE (1989) Structure and function of the Zn(II) binding site within the DNA-binding domain of the GAL4 transcription factor. Proc Natl Acad Sci USA 86:3145–3149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pindyurin AV, Moorman C, de Wit E, Belyakin SN, Belyaeva ES, Christophides GK, Kafatos FC, van Steensel B, Zhimulev IF (2007) SUUR joins separate subsets of PcG, HP1 and B-type lamin targets in Drosophila. J Cell Sci 120:2344–2351

    Article  CAS  PubMed  Google Scholar 

  • Pindyurin AV, Boldyreva LV, Shloma VV, Kolesnikova TD, Pokholkova GV, Andreyeva EN, Kozhevnikova EN, Ivanoschuk IG, Zarutskaya EA, Demakov SA, Gorchakov AA, Belyaeva ES, Zhimulev IF (2008) Interaction between the Drosophila heterochromatin proteins SUUR and HP1. J Cell Sci 121:1693–1703

    Article  CAS  PubMed  Google Scholar 

  • Poux S, McCabe D, Pirrotta V (2001) Recruitment of components of polycomb group chromatin complexes in Drosophila. Development 128:75–85

    CAS  PubMed  Google Scholar 

  • Quivy JP, Gérard A, Cook AJ, Roche D, Almouzni G (2008) The HP1-p150/CAF-1 interaction is required for pericentric heterochromatin replication and S-phase progression in mouse cells. Nat Struct Mol Biol 15:972–979

    Article  CAS  PubMed  Google Scholar 

  • Richards EJ, Elgin SC (2002) Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects. Cell 108:489–500

    Article  CAS  PubMed  Google Scholar 

  • Rubin GM, Spradling AC (1982) Genetic transformation of Drosophila with transposable element vectors. Science 218:348–353

    Article  CAS  PubMed  Google Scholar 

  • Schwaiger M, Kohler H, Oakeley EJ, Stadler MB, Schübeler D (2010) Heterochromatin protein 1 (HP1) modulates replication timing of the Drosophila genome. Genome Res 20:771–780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seum C, Spierer A, Delattre M, Pauli D, Spierer P (2000) A GAL4-HP1 fusion protein targeted near heterochromatin promotes gene silencing. Chromosoma 109:453–459

    Article  CAS  PubMed  Google Scholar 

  • Sher N, Bell GW, Li S, Nordman J, Eng T, Eaton ML, Macalpine DM, Orr-Weaver TL (2012) Developmental control of gene copy number by repression of replication initiation and fork progression. Genome Res 22:64–75

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trembecka-Lucas DO, Dobrucki JW (2012) A heterochromatin protein 1 (HP1) dimer and a proliferating cell nuclear antigen (PCNA) protein interact in vivo and are parts of a multiprotein complex involved in DNA replication and DNA repair. Cell Cycle 11:2170–2175

    Article  CAS  PubMed  Google Scholar 

  • Vatolina TY, Boldyreva LV, Demakova OV, Demakov SA, Kokoza EB, Semeshin VF, Babenko VN, Goncharov FP, Belyaeva ES, Zhimulev IF (2011) Identical functional organization of nonpolytene and polytene chromosomes in Drosophila melanogaster. PLoS One 6(10):e25960

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhimulev IF, Semeshin VF, Kulichkov VA, Belyaeva ES (1982) Intercalary рeterochromatin in Drosophila. I. Localization and general characteristics. Chromosoma 87:197–228

    Article  Google Scholar 

  • Zhimulev IF, Belyaeva ES, Makunin IV, Pirrotta V, Volkova EI, Alekseyenko AA, Andreyeva EN, Makarevich GF, Boldyreva LV, Nanayev RA, Demakova OV (2003) Influence of the SuUR gene on intercalary heterochromatin in Drosophila melanogaster polytene chromosomes. Chromosoma 111:377–398

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to T. Kolesnikova and T. Dubatolova for their assistance with the experiments; C. Seum, P. Spierer, and Bloominghton Stock Center are gratefully acknowledged for providing valuable fly stocks; and the authors also thank S. Elgin for sharing the antibodies. This work was supported by the grant of the Russian Science Foundation (14-14-00934).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena S. Belyaeva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 26 kb)

Suppl. Fig. 1

UAS-bearing constructs used in this work (adapted from Bellen et al. 2011) and their integration sites. Genomic coordinates according to the R5.56, FB2014_02 release (flybase.org) are shown (GIF 23 kb)

High Resolution Image (EPS 277 kb)

Suppl. Fig. 2

FISH mapping of UAS-3B, -8D, and -18B transgenes in polytene chromosomes. Mini-white DNA was used as a probe. Integration sites are shown by the arrows. In the case of UAS-3B, a second signal, distinct from 3B, is present at 3C (white arrow), which is due to hybridization of the probe to the endogenous white gene found at this location. Bar 5 μm (GIF 175 kb)

High Resolution Image (TIFF 9960 kb)

Suppl. Fig. 3

Immunolocalization of SUUR and HP1 in wild-type polytene chromosomes. SUUR is present in the pericentric heterochromatin (PH), nucleolus (N), and numerous intercalary heterochromatin sites. HP1 is largely concentrated in the pericentric heterochromatin and on the fourth chromosome and is less prominent in the region 31 and in telomeres (telomeres of the chromosomes 2R and X are indicated). Bar 5 μm (GIF 214 kb)

High Resolution Image (TIFF 13739 kb)

Suppl. Fig. 4

Immunostaining of polytene chromosomes from GAL4DBD > UAS-8D larvae with Myc-specific antibodies recognizing GAL4DBD protein. Tethering site 8D (arrow) is robustly labeled consistent with the recruitment of GAL4DBD to this genomic region (a). Anti-PCNA staining at different S phase stages (b–d) shows that binding of GAL4DBD to the UAS-8D site does not delay its replication timing. Much as in the wild-type chromosomes, this region is replicating early, and no replication at this site is observed during the mid- or late S phase. Bar 5 μm (GIF 138 kb)

High Resolution Image (TIFF 13570 kb)

Suppl. Fig. 5

Replication patterns around the tethering site at 3B3-4 (arrow) in the control chromosomes from UAS-3D larvae (a–c) and upon targeted recruitment of SUURGAL4DBD (d–f). Co-staining with anti-PCNA and anti-SUUR antibodies was used to determine the specific stage of S phase and visualize SUURGAL4DBD in the region of interest. Bar 5 μm (GIF 273 kb)

High Resolution Image (TIFF 17067 kb)

Suppl. Fig. 6

Replication patterns around the tethering site at 18B3 (arrow) in the control chromosomes from UAS-18D larvae (a–c) and upon tethering of SUURGAL4DBD (d–f). Co-staining with anti-PCNA and anti-SUUR antibodies was used to determine the specific stage of S phase and visualize SUURGAL4DBD in the region of interest. Bar 5 μm (GIF 242 kb)

High Resolution Image (TIFF 17081 kb)

Suppl. Fig. 7

BrdU incorporation pattern around the tethering site at 8D8-10 (arrow), as found at the late S phase in UAS-8D chromosomes in the absence (a) or presence (b) of tethered HP1GAL4DBD. Chromosomes were co-immunostained with antibodies against BrdU and HP1. In the absence of HP1GAL4DBD, the site of tethering completes replication by the end of the S phase, as opposed to the situation when HP1GAL4DBD is present, and replication at UAS-8D is still detectable at this late stage. Bar 5 μm (GIF 109 kb)

High Resolution Image (TIFF 7533 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pokholkova, G.V., Koryakov, D.E., Pindyurin, A.V. et al. Tethering of SUUR and HP1 proteins results in delayed replication of euchromatic regions in Drosophila melanogaster polytene chromosomes. Chromosoma 124, 209–220 (2015). https://doi.org/10.1007/s00412-014-0491-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-014-0491-8

Keywords

Navigation