Skip to main content
Log in

Efficient parameter estimation in multiresponse models measuring radioactivity retention

  • Original Article
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

After incorporation of radioactive substances, workers are routinely checked by bioassays (isotopic activity excreted via urine, measurements of radionuclides retained in the whole body or in the lungs, etc.). From the results, the isotopic activity incorporated by the worker is inferred, as well as the values of other parameters related to the metabolism of the incorporated substance, using the ’response function’. This function depends on several factors and it is usually obtained by solving a system of linear differential equations, resulting from the compartmental model which describes the human body (or a part of it). The possibility of using different types of bioassays from the same worker improves estimation of some of the parameters that characterize the solution of the system of equations, specially the unknown incorporated activity to the system. The transfer coefficients are usually considered to be known, using the values that are published in the corresponding International Commission of Radiological Protection (ICRP) publication. In the present study some practical cases will be presented, and optimal design criteria are developed that allow taking the bio-samples at the most informative times. The methodology presented here requires solving the models of element distribution in the human organism as a function of time, for which the recently updated models recommended by the ICRP have been used. Initially thought for workers in facilities dealing with radioactive substances, the study results, procedures and conclusions can be applied to other clinical or laboratory settings, and to the design of action protocols in case of environmental public exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amo-Salas M, López-Fidalgo J, Porcu E (2013) Optimal designs for some stochastic processes whose covariance is a function of the mean. Test 22:159–181

    Article  MathSciNet  MATH  Google Scholar 

  • Atkinson AC, Chaloner K, Herzberg AM, Juritz J (1993) Optimum experimental designs for properties of a compartmental model. Biometrics 49:325–337

    Article  MATH  Google Scholar 

  • Atkinson AC, Donev AN, Tobias RD (2007) Optimum experimental designs, with SAS. Oxford University Press, New York

    MATH  Google Scholar 

  • Cressie N, Wikle CK (2011) Statistics for spatio-temporal data. Wiley, New Jersey

    MATH  Google Scholar 

  • Dette H, Hoyden L, Kuhnt S, Schorning K (2013) Optimal designs for multi-response generalized linear models with applications in thermal spraying. arXiv:1312.4472 [stat.AP]

  • Dette H, Pepelyshev A, Zhigljavsky A (2015) Design for linear regression models with correlated errors. Handbook of design and analysis of experiments, CRC Press, Boca Raton, pp 237–276

    MATH  Google Scholar 

  • Draper NR, Hunter WG (1966) Design of experiments for parameter estimation in multiresponse situations. Biometrika 53:525–533

    Article  MathSciNet  MATH  Google Scholar 

  • Draper NR, Hunter WG (1967) The use of prior distributions in the design of experiments for parameter estimation in non-linear situations: multiresponse case. Biometrika 54:662–665

    Article  MathSciNet  Google Scholar 

  • Fedorov VV, Gagnon R, Leonov S (2001) Optimal design for multiple responses with variance depending on unknown parameters. GSK BDS technical report 2001-03

  • Fedorov VV, Leonov SL (2007) Population pharmacokinetic measures, their estimation and selection of sampling times. J Biopharm Stat 17:919–941

    Article  MathSciNet  Google Scholar 

  • Gagnon R, Leonov S (2005) Optimal population designs for PK models with serial sampling. J Biopharm Stat 15:143–163

    Article  MathSciNet  Google Scholar 

  • Hill PDH (1980) \(D\)-optimal designs for partially nonlinear regression models. Technometrics 22:275–276

    Article  MathSciNet  MATH  Google Scholar 

  • ICRP 100 (2006) Human alimentary tract model for radiological protection. ICRP Publication 100. Ann ICRP 36(1–2)

  • ICRP 130 (2015) Occupational intakes of radionuclides: part 1. ICRP Publication 130. Ann ICRP 44(2)

  • ICRP 134 (2016) Occupational intakes of radionuclides: part 2. ICRP Publication 134. Ann ICRP 45(3/4):1–352

    Google Scholar 

  • ICRP 137 (2017) Occupational intakes of radionuclides: part 3. ICRP Publication 137. Ann ICRP 46(3/4)

  • Jacquez JA (1985) Compartmental analysis in biology and medicine. The University of Michigan Press, Ann Arbor

    MATH  Google Scholar 

  • López-Fidalgo J, Rodríguez-Díaz JM, Sánchez-León G, Santos-Martín MT (2005) Optimal designs for compartmental models with correlated observations. J Appl Stat 32(10):1075–1088

    Article  MathSciNet  MATH  Google Scholar 

  • López-Fidalgo J, Sánchez-León G (2005) Statistical criteria to establish bioassay programs. Health Phys 89(4):333–338

    Article  Google Scholar 

  • Magnus JR, Neudecker H (1988) Matrix differential calculus with applications in statistics and econometrics. Wiley, New York

    Book  MATH  Google Scholar 

  • Marsh JW, Blanchardon E, Castellani CM, Desai AD, Dorrian M-D, Hurtgen C, Koukouliou V, López MA, Luciani A, Puncher M, Andrasi A, Bailey MR, Berkovski V, Birchall A, Bonchug Y, Doerfel H, Malatova I, Molokanov A, Ratia H (2007) Evaluation of scattering factor values for internal dose assessment following the ideas guidelines: preliminary results. Radiat Prot Dosim 127:339–342

    Article  Google Scholar 

  • Mentré F, Mallet A, Baccar D (2007) Optimal design in random-effects regression models. Biometrika 84:429–442

    Article  MathSciNet  MATH  Google Scholar 

  • Mentré F, Duffull S, Gueorguieva I, Hooker A, Leonov S, Ogungbenro K, Retout S (2007) Software for optimal design in population pharmacokinetics and pharmacodynamics: a comparison. In: Abstracts of the annual meeting of the population approach group in Europe (PAGE)

  • Mentré F, Nyberg J, Ogungbenro K, Leonov S, Aliev A, Duffull S, Bazzoli C, Hooker A (2011) Comparison of results of the different software for design evaluation in population pharmacokinetics and pharmacodynamics. In: Abstracts of the annual meeting of the population approach group in Europe (PAGE)

  • Pázman A (2007) Criteria for optimal design for small-sample experiments with correlated observations. Kybernetika 43(4):453–462

    MathSciNet  MATH  Google Scholar 

  • Pukelsheim F (1993) Optimal design of experiments. Wiley, New York

    MATH  Google Scholar 

  • Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. The MIT Press, New York

    MATH  Google Scholar 

  • Retout S, Mentré F (2003) Further developments of the Fisher information matrix in nonlinear miled effects models with evaluation in population pharmacokinetics. J Biopharm Stat 13:209–227

    Article  MATH  Google Scholar 

  • Rodríguez-Díaz JM, Sánchez-León G (2014) Design optimality for models defined by a system of ordinary differential equations. Biometr J 56(5):886–900

    Article  MathSciNet  MATH  Google Scholar 

  • Sánchez-León G (2007) Fitting bioassay data and performing uncertainty analysis with BIOKMOD. Health Phys 92(1):64–72

    Article  Google Scholar 

  • Sánchez-León G, López-Fidalgo J (2003) Mathematical techniques for solving analytically large compartmental systems. Health Phys 85(2):184–193

    Article  Google Scholar 

  • Sánchez-León G, Rodríguez-Díaz JM (2007) Optimal design and mathematical model applied to establish bioassay programs. Radiat Prot Dosim 123(4):457–463

    Article  Google Scholar 

  • Yue RS, Liu X, Chatterjee K (2014) D-optimal designs for multiresponse linear models with a qualitative factor. J Multivar Anal 124:57–69

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the Spanish Ministry of Education, Culture and Sports, and the Regional Government of Castilla y León (Projects ‘MTM 2013-47879-C2-2-P’, ‘MTM2016-80539-C2-2-R’ and ‘SA130U14’, ‘SA080P17’ respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Rodríguez-Díaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Cobalt model

For inhalation both the HRTM and the cobalt models are interconnected (Figs. 7, 8, Table 5).

Fig. 7
figure 7

Human respiratory tract model (HRTM ICRP 130)

Fig. 8
figure 8

Cobalt model (ICRP 134 2016), including the Human Alimentary Tract Model HATM (ICRP 100 2006)

Table 5 Absorption (default) parameters for inhaled and ingested cobalt (ICRP 134)

The information matrix of the one-point scenario can be written as:

$$\begin{aligned} M_1=\frac{1}{1-S_{12}^2}\left( \begin{array}{cc} m_{11} &{} I\; m_{12} \\ I\; m_{21} &{} I\; m_{22}\\ \end{array} \right) , \end{aligned}$$

with

$$\begin{aligned} m_{11} &= (w-1)^2 {f_1^M}(t)^2 -2 (w-1) (w {f_1^S}(t)+s (w-1) {f_2^M}(t)-s w {f_2^S}(t)) {f_1^M}(t) \\& \quad + w^2 {f_1^S}(t)^2+(-w {f_2^M}(t)+{f_2^M}(t)+w {f_2^S}(t))^2 \\& \quad - 2 s w {f_1^S}(t) (-w {f_2^M}(t)+{f_2^M}(t)+w {f_2^S}(t)) , \\ m_{12} &= (w-1) {f_1^M}(t)^2 +((1-2 w) {f_1^S}(t)-s (2 (w-1) {f_2^M}(t)-2 w {f_2^S}(t)+{f_2^S}(t))) {f_1^M}(t) \\& \quad + w {f_1^S}(t)^2+s {f_1^S}(t) ((2 w-1) {f_2^M}(t)-2 w {f_2^S}(t)) \\& \quad + ({f_2^M}(t)-{f_2^S}(t)) ((w-1) {f_2^M}(t)-w {f_2^S}(t)), \\ m_{21} &= (1-w) {f_1^M}(t)^2 +((2 w-1) {f_1^S}(t)+s (2 (w-1) {f_2^M}(t)-2 w {f_2^S}(t)+{f_2^S}(t))) {f_1^M}(t) \\& \quad - w {f_1^S}(t)^2-({f_2^M}(t)-{f_2^S}(t)) ((w-1) {f_2^M}(t)-w {f_2^S}(t)) \\& \quad + s {f_1^S}(t) (-2 w {f_2^M}(t)+{f_2^M}(t)+2 w {f_2^S}(t)) , \\ m_{22} &= {f_1^M}(t)^2-2 ({f_1^S}(t) +s ({f_2^M}(t)-{f_2^S}(t))) {f_1^M}(t) \\& \quad + {f_1^S}(t)^2+({f_2^M}(t)-{f_2^S}(t))^2+2 s {f_1^S}(t) ({f_2^M}(t)-{f_2^S}(t)) . \end{aligned}$$

The whole body model for solubilities S and M can be written as:

$$\begin{aligned} f_1^S &= -6755.78 {\text {e}}^{-2.100 t}+317654 {\text {e}}^{-2.020 t}-567862 {\text {e}}^{-2.010 t}+ 256966 {\text {e}}^{-2.000 t}+ 0.000353 {\text {e}}^{-1.200 t}- 4.742\times 10^{-6} {\text {e}}^{-1.003 t}- 7.880\times 10^{-6} {\text {e}}^{-1.00036 t}-0.0000158 {\text {e}}^{-0.668 t}- 3.782\times 10^{-7} {\text {e}}^{-0.462 t}+0.000602 {\text {e}}^{-0.331 t}+0.0152 {\text {e}}^{-0.200 t}- 9.842\times 10^{-12} {\text {e}}^{-0.0994 t}+0.000286 {\text {e}}^{-0.0769 t}+0.0000762 {\text {e}}^{-0.0129 t}+ 0.0357 {\text {e}}^{-0.00346 t}+ 0.000131 {\text {e}}^{-0.00217 t}+0.0000362 {\text {e}}^{-0.00127 t}- 0.0000223 {\text {e}}^{-0.000848 t}+0.0173 {\text {e}}^{-0.000460 t}+ 0.00104 {\text {e}}^{-0.000441 t} \\ f_1^M &= -6546.61 {\text {e}}^{-2.100 t}+307970 {\text {e}}^{-2.020 t}-550585 {\text {e}}^{-2.010 t}+ 249162 {\text {e}}^{-2.00036 t}+0.00688 {\text {e}}^{-1.200 t}-0.0000998 {\text {e}}^{-1.00336 t}- 0.000158 {\text {e}}^{-1.00036 t}-0.000315 {\text {e}}^{-0.668 t}-7.499\times 10^{-6} {\text {e}}^{-0.462 t}+ 0.0119 {\text {e}}^{-0.331 t}+0.0122 {\text {e}}^{-0.205 t}+ 2.0657\times 10^{-8} {\text {e}}^{-0.0994 t}+ 0.00538 {\text {e}}^{-0.0769 t}-0.00137 {\text {e}}^{-0.0129 t}+0.0302 {\text {e}}^{-0.00836 t}+ 0.0137 {\text {e}}^{-0.00536 t}+0.00306 {\text {e}}^{-0.00217 t}+0.00305 {\text {e}}^{-0.00127 t}+ 0.000743 {\text {e}}^{-0.000848 t}+0.000641 {\text {e}}^{-0.000441 t} \end{aligned}$$

The 24-urine excretion model is as follows:

$$\begin{aligned} f_2^S &= 0.00144 {\text {e}}^{-2.100 t}+0.0000496 {\text {e}}^{-1.200 t}+0.000128 {\text {e}}^{-1.003 t}+ 0.0000650 {\text {e}}^{-t}+0.0000126 {\text {e}}^{-0.668 t}- 2.220\times 10^{-7} {\text {e}}^{-0.462 t}+ 0.000123 {\text {e}}^{-0.331 t}+ 2.405\times 10^{-6} {\text {e}}^{-0.200 t}+0.0000174 {\text {e}}^{-0.0769 t}+ 7.689\times 10^{-7} {\text {e}}^{-0.0129 t}+ 2.520\times 10^{-6} {\text {e}}^{-0.00346 t}+ 1.908\times 10^{-7} {\text {e}}^{-0.00217 t}+ 2.633\times 10^{-8} {\text {e}}^{-0.00127 t}- 9.073\times 10^{-9} {\text {e}}^{-0.000848 t}+ 1.396\times 10^{-6} {\text {e}}^{-0.000460 t}+ 6.908\times 10^{-8} {\text {e}}^{-0.000441 t}\\ f_2^M &= 0.0284 {\text {e}}^{-2.100 t}+0.000998 {\text {e}}^{-1.200 t}+0.00257 {\text {e}}^{-1.00336 t}+ 0.00130 {\text {e}}^{-1.00036 t}+0.000250 {\text {e}}^{-0.668 t}- 4.404\times 10^{-6} {\text {e}}^{-0.462 t}+ 0.00242 {\text {e}}^{-0.331 t}+0.0000598 {\text {e}}^{-0.205 t}+ 1.736\times 10^{-9} {\text {e}}^{-0.0994 t}+ 0.000328 {\text {e}}^{-0.0769 t}-0.0000138 {\text {e}}^{-0.0129 t}+0.000125 {\text {e}}^{-0.00836 t}+ 0.0000552 {\text {e}}^{-0.00536 t}+ 4.466\times 10^{-6} {\text {e}}^{-0.00217 t}+ 2.233\times 10^{-6} {\text {e}}^{-0.00127 t}+ 2.919\times 10^{-7} {\text {e}}^{-0.000848 t}+ 4.198\times 10^{-8} {\text {e}}^{-0.000441 t} \end{aligned}$$

Uranium model

$$\begin{aligned} f_{12} &= {\text {e}}^{-310.76 t} (2.362\times 10^{-6} {\text {e}}^{209.76 t} + 1.219\times 10^{-7} {\text {e}}^{210.759 t}- 0.0000152 {\text {e}}^{272.81 t} + 0.0000635 {\text {e}}^{290.19 t}- 0.000284 {\text {e}}^{298.76 t} + 0.000170 {\text {e}}^{299.76 t}- 0.0000388 {\text {e}}^{300.759 t}- 0.000374 {\text {e}}^{304.756 t} + 0.000133 {\text {e}}^{305.382 t}+ 0.000452 {\text {e}}^{308.66 t} + 0.000206 {\text {e}}^{309.56 t} + 0.000787 {\text {e}}^{309.757 t} + 0.000401 {\text {e}}^{309.76 t}+ 0.0000194 {\text {e}}^{310.416 t}+ 0.0000144 {\text {e}}^{310.559 t} + 0.0000592 {\text {e}}^{310.621 t} + 0.0000148 {\text {e}}^{310.661 t} + 0.000384 {\text {e}}^{310.663 t} + 0.000116 {\text {e}}^{310.728 t} - 6.678\times 10^{-6} {\text {e}}^{310.747 t}+ 0.00249 {\text {e}}^{310.756 t} + 0.000629 {\text {e}}^{310.759 t} + 0.000989 {\text {e}}^{310.759 t} + 4.326\times 10^{-6} {\text {e}}^{310.76 t}+ 1.790\times 10^{-6} {\text {e}}^{310.76 t}+ 8.012\times 10^{-6} {\text {e}}^{310.76 t} + 3.786\times 10^{-7} {\text {e}}^{310.76 t} )\\ f_{13} &= {\text {e}}^{-310.76 t} (0.000477 {\text {e}}^{309.56 t} + 0.00136 {\text {e}}^{309.757 t} + 0.000689 {\text {e}}^{309.76 t} + 7.971\times 10^{-} {\text {e}}^{310.416 t}+ 3.196\times 10^{-6} {\text {e}}^{310.559 t}+ 8.823\times 10^{-6} {\text {e}}^{310.621 t} + 1.545\times 10^{-6} {\text {e}}^{310.661 t} + 0.0000392 {\text {e}}^{310.663 t}+ 3.808\times 10^{-6} {\text {e}}^{310.728 t} - 9.2\times 10^{-8} {\text {e}}^{310.747 t} + 0.0000173 {\text {e}}^{310.756 t} + 3.307\times 10^{-6} {\text {e}}^{310.759 t} + 5.187\times 10^{-6} {\text {e}}^{310.759 t} + 2.247\times 10^{-8} {\text {e}}^{310.76 t} + 9.123\times 10^{-9} {\text {e}}^{310.76 t} + 4.039\times 10^{-8} {\text {e}}^{310.76 t} + 1.897\times 10^{-9} {\text {e}}^{310.76 t} ) \\ f_{22} &= 0.000267 {\text {e}}^{-1.2 t}+0.0016 {\text {e}}^{-1. t}+0.0517 {\text {e}}^{-0.201 t}+ 5.024 {\text {e}}^{-0.0035 t}+3.284 {\text {e}}^{-0.0005 t} \\ f_{23} &= 0.00032 {\text {e}}^{-1.2 t}+0.0016 {\text {e}}^{-1. t}+0.0104 {\text {e}}^{-0.201 t}+ 0.0349 {\text {e}}^{-0.0035 t}+ 0.0173 {\text {e}}^{-0.0005 t} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Díaz, J.M., Sánchez-León, G. Efficient parameter estimation in multiresponse models measuring radioactivity retention. Radiat Environ Biophys 58, 167–182 (2019). https://doi.org/10.1007/s00411-019-00780-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-019-00780-7

Keywords

Mathematics Subject Classification

Navigation