Skip to main content

Advertisement

Log in

The system NaAlSi2O6‒CaMgSi2O6−CO2 at 3–6.5 GPa: implications for CO2 stability in the eclogitic suite at depths of 100–200 km

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

In this work, we studied the phase relationships in the NaAlSi2O6–CaMgSi2O6–CO2 system in the range of 3–6.5 GPa and 900–1500 ℃ using a multianvil press. The duration of most experiments varied from 5 to 9 days. Equilibrium was examined from both sides using oxide-carbonate mixtures and diopside-jadeite glasses with Ag2C2O4 as starting materials. We found that the subsolidus assemblage is represented by clinopyroxene, coesite, dolomite, and CO2 fluid. The solidus of the system passes through 1015 ℃/3 GPa and 1095 ℃/6 GPa, and has a slope of 38 MPa/℃. The near-solidus carbonate melt contains 1–4 mol% SiO2 and 1–4 mol% Na2O. We found that clinopyroxene can be in equilibrium with CO2 fluid under P–T conditions corresponding to the diamond stability field to at least 6–6.5 GPa and 1050–1100 ℃. Yet, the composition of such clinopyroxene corresponds to almost pure jadeite, Jd# 95–97. Thus, the infiltration of CO2 fluid into eclogite under conditions of the continental lithospheric mantle should be accompanied by partial carbonation of clinopyroxene with the formation of a low-Mg carbonate melt with moderate concentrations of sodium. As a result of the reaction, the compositions of clinopyroxenes of eclogites of Groups A and B should shift towards a high-jadeite composition corresponding to eclogites of Group C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author (Sahstkiy Anton shatskiyantonf@gmail.com) on the reasonable request.

Abbreviations

Ca#:

Ca/(Ca + Mg) × 100 mol%

Cal:

Calcite

Coe:

Coesite

Cpx:

Clinopyroxene

Di:

Diopside

Dol:

Dolomite

Eit:

Eitelite

Jd:

Jadeite

Jd#:

Jd/(Jd + Di) × 100 mol%

F:

Fluid

Gr:

Graphite

L:

Liquid

Mgs:

Magnesite

Na2#:

Na2O/(Na2O + CaO + MgO) × 100 mol%

Qz:

Quartz

References

  • Barannik EP, Shiryaev AA, Hainschwang T (2021) Shift of CO2-I absorption bands in diamond: a pressure or compositional effect? A FTIR mapping study. Diam Relat Mater 113:108280

    Article  Google Scholar 

  • Bataleva YV, Novoselov ID, Kruk AN, Furman OV, Reutsky VN, Palyanov YN (2020) Experimental modeling of decarbonation reactions resulting in Mg, Fe-garnets and CO2 fluid at the mantle P-T parameters. Russ Geol Geophys 61(5–6):650–662

    Article  Google Scholar 

  • Brey G, Brice WR, Ellis DJ, Green DH, Harris KL, Ryabchikov ID (1983) Pyroxene-carbonate reactions in the upper mantle. Earth Planet Sci Lett 62(1):63–74. https://doi.org/10.1016/0012-821x(83)90071-7

    Article  Google Scholar 

  • Buob A, Luth RW, Schmidt MW, Ulmer P (2006) Experiments on CaCO3-MgCO3 solid solutions at high pressure and temperature. Am Miner 91(2–3):435–440

    Article  Google Scholar 

  • Chinn IL (1995) A study of unusual diamonds from the George Creek K1 Kimberlite dyke, Colorado. PhD thesis, University of Cape Town

  • Dalton JA, Presnall DC (1998) Carbonatitic melts along the solidus of model lherzolite in the system CaO-MgO-Al2O3-SiO2-CO2 from 3 to 7 GPa. Contrib Miner Petrol 131(2–3):123–135. https://doi.org/10.1007/s004100050383

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM, Withers AC (2004) Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet Sci Lett 227(1–2):73–85. https://doi.org/10.1016/j.epsl.2004.08.004

    Article  Google Scholar 

  • Day HW (2012) A revised diamond-graphite transition curve. Am Miner 97(1):52–62

    Article  Google Scholar 

  • Eggler DH (1975) Peridotite-carbonate relations in the system CaO-MgO-SiO2-CO2. Carnegie Inst Washington Yearbook 74:468–474

    Google Scholar 

  • Eggler DH, Rosenhauer M (1978) Carbon dioxide in silicate melts; II, solubilities of CO2 and H2O in CaMgSi2O6 (diopside) liquids and vapors at pressures to 40 kb. Am J Sci 278(1):64–94

    Article  Google Scholar 

  • Hammouda T (2003) High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle. Earth Planet Sci Lett 214(1–2):357–368. https://doi.org/10.1016/s0012-821x(03)00361-3

    Article  Google Scholar 

  • Hasterok D, Chapman DS (2011) Heat production and geotherms for the continental lithosphere. Earth Planet Sci Lett 307(1–2):59–70

    Article  Google Scholar 

  • Hemingway BS, Bohlen SR, Hankins WB, Westrum EF, Kuskov OL (1998) Heat capacity and thermodynamic properties for coesite and jadeite, reexamination of the quartz-coesite equilibrium boundary. Am Miner 83(3–4):409–418

    Article  Google Scholar 

  • Huang WL, Wyllie PJ (1976) Melting relationships in the systems CaO-CO2 and MgO-CO2 to 33 kilobars. Geochim Cosmochim Acta 40(2):129–132

    Article  Google Scholar 

  • Kiseeva ES, Yaxley GM, Hermann J, Litasov KD, Rosenthal A, Kamenetsky VS (2012) An experimental study of carbonated eclogite at 35–55 GPa—implications for silicate and carbonate metasomatism in the cratonic mantle. J Petrol 53(4):727–759

    Article  Google Scholar 

  • Knoche R, Sweeney RJ, Luth RW (1999) Carbonation and decarbonation of eclogites: the role of garnet. Contrib Miner Petrol 135(4):332–339. https://doi.org/10.1007/s004100050515

    Article  Google Scholar 

  • Lavrent’ev YG, Karmanov NS, Usova LV (2015) Electron probe microanalysis of minerals: microanalyzer or scanning electron microscope? Rus Geol Geophys. 56(8):1154–1161. https://doi.org/10.1016/j.rgg.2015.07.006

    Article  Google Scholar 

  • Luth RW (1995) Experimental deter’mination of the reaction dolomite + 2 coesite = diopside + 2 CO2 to 6 GPa. Contrib Miner Petrol 122(1–2):152–158. https://doi.org/10.1007/s004100050118

    Article  Google Scholar 

  • Luth RW (2001) Experimental determination of the reaction aragonite plus magnesite = dolomite at 5 to 9 GPa. Contrib Miner Petrol 141(2):222–232

    Article  Google Scholar 

  • Luth RW (2006) Experimental study of the CaMgSi2O6-CO2 system at 3–8 GPa. Contrib Miner Petrol 151(2):141–157. https://doi.org/10.1007/s00410-005-0051-6

    Article  Google Scholar 

  • Newbury DE, Ritchie NWM (2015) Performing elemental microanalysis with high accuracy and high precision by scanning electron microscopy/silicon drift detector energy-dispersive X-ray spectrometry (SEM/SDD-EDS). J Mater Sci 50(2):493–518

    Article  Google Scholar 

  • Pal’yanov YN, Sokol AG, Khokhryakov AF, Pal’yanova GA, Borzdov YM, Sobolev NV (2000) Diamond and graphite crystallization in COH fluid at PT parameters of the natural diamond formation. Dokl Earth Sci 375(9):1395–1398

    Google Scholar 

  • Podborodnikov IV, Shatskiy A, Arefiev AV, Bekhtenova A, Litasov KD (2019a) New data on the system Na2CO3–CaCO3–MgCO3 at 6 GPa with implications to the composition and stability of carbonatite melts at the base of continental lithosphere. Chem Geol 515:50–60. https://doi.org/10.1016/j.chemgeo.2019.03.027

    Article  Google Scholar 

  • Podborodnikov IV, Shatskiy A, Arefiev AV, Litasov KD (2019b) Phase relations in the system Na2CO3–CaCO3–MgCO3 at 3 GPa with implications for carbonatite genesis and evolution. Lithos 330–331:74–89. https://doi.org/10.1016/j.lithos.2019.01.035

    Article  Google Scholar 

  • Ragozin AL, Shatsky VS, Rylov GM, Goryainov SV (2002) Coesite inclusions in rounded diamonds from placers of the Northeastern Siberian Platform. Dokl Earth Sci 384(4):385–389

    Google Scholar 

  • Ragozin AL, Shatskii VS, Zedgenizov DA (2009) New data on the growth environment of diamonds of the variety V from placers of the Northeastern Siberian platform. Dokl Earth Sci 425(2):436–440. https://doi.org/10.1134/s1028334x09030192

    Article  Google Scholar 

  • Ragozin AL, Zedgenizov DA, Kuper KE, Shatsky VS (2016) Radial mosaic internal structure of rounded diamond crystals from alluvial placers of Siberian platform. Mineral Petrol 110(6):861–875

    Article  Google Scholar 

  • Schrauder M, Navon O (1993) Solid carbon dioxide in natural diamond. Nature 365(6441):42–44. https://doi.org/10.1038/365042a0

    Article  Google Scholar 

  • Shatskiy A, Litasov KD, Sharygin IS, Egonin IA, Mironov AM, Palyanov YN, Ohtani E (2016) The system Na2CO3–CaCO3–MgCO3 at 6 GPa and 900–1250 °C and its relation to the partial melting of carbonated mantle. High Pressure Res 36(1):23–41. https://doi.org/10.1080/08957959.2015.1135916

    Article  Google Scholar 

  • Shatskiy A, Podborodnikov IV, Arefiev AV, Litasov KD, Chanyshev AD, Sharygin IS, Karmanov NS, Ohtani E (2017) Effect of alkalis on the reaction of clinopyroxene with Mg-carbonate at 6 GPa: implications for partial melting of carbonated lherzolite. Am Miner 102(9):1934–1946. https://doi.org/10.2138/am-2017-6048

    Article  Google Scholar 

  • Shatskiy A, Podborodnikov IV, Arefiev AV, Minin DA, Chanyshev AD, Litasov KD (2018) Revision of the CaCO3–MgCO3 phase diagram at 3 and 6 GPa. Am Miner 103(3):441–452. https://doi.org/10.2138/am-2018-6277

    Article  Google Scholar 

  • Shatskiy A, Arefiev AV, Podborodnikov IV, Litasov KD (2019) Origin of K-rich diamond-forming immiscible melts and CO2 fluid via partial melting of carbonated pelites at a depth of 180–200 km. Gondwana Res 75(11):154–171. https://doi.org/10.1016/j.gr.2019.05.004

    Article  Google Scholar 

  • Shatskiy A, Arefiev AV, Podborodnikov IV, Litasov KD (2020a) Liquid immiscibility and phase relations in the join KAlSi3O8–CaMg(CO3)2±NaAlSi2O6±Na2CO3 at 6 GPa: implications for diamond-forming melts. Chem Geol 550:119701. https://doi.org/10.1016/j.chemgeo.2020.119701

    Article  Google Scholar 

  • Shatskiy A, Bekhtenova A, Podborodnikov IV, Arefiev AV, Litasov KD (2020b) Carbonate melt interaction with natural eclogite at 6 GPa and 1100–1200 °C: Implications for metasomatic melt composition in subcontinental lithospheric mantle. Chem Geol 558:119915. https://doi.org/10.1016/j.chemgeo.2020.119915

    Article  Google Scholar 

  • Shatskiy A, Bekhtenova A, Podborodnikov IV, Arefiev AV, Litasov KD (2020c) Metasomatic interaction of the eutectic Na-and K-bearing carbonate melts with natural garnet lherzolite at 6 GPa and 1100–1200 °C: toward carbonatite melt composition in SCLM. Lithos 374–375:105725. https://doi.org/10.1016/j.lithos.2020.105725

    Article  Google Scholar 

  • Shatskiy A, Arefiev AV, Podborodnikov IV, Litasov KD (2021a) Effect of water on carbonate-silicate liquid immiscibility in the system KAlSi3O8–CaMgSi2O6–NaAlSi2O6–CaMg(CO3)2 at 6 GPa: implications for diamond-forming melts. Am Miner 106(2):165–173. https://doi.org/10.2138/am-2020-7551

    Article  Google Scholar 

  • Shatskiy A, Podborodnikov IV, Arefiev AV, Bekhtenova A, Vinogradova YG, Stepanov KM, Litasov KD (2021b) Pyroxene-carbonate reactions in the CaMgSi2O6 ± NaAlSi2O6 + MgCO3 ± Na2CO3 ± K2CO3 system at 3–6 GPa: Implications for partial melting of carbonated peridotite. Contrib Miner Petrol 176(5):34. https://doi.org/10.1007/s00410-021-01790-9

    Article  Google Scholar 

  • Shatskiy A, Bekhtenova A, Arefiev AV, Litasov KD (2023a) Melt composition and phase equilibria in the eclogite-carbonate system at 6 GPa and 900–1500 °C. Minerals 13(1):82. https://doi.org/10.3390/min13010082

    Article  Google Scholar 

  • Shatskiy A, Vinogradova YG, Arefiev AV, Litasov KD (2023b) Revision of the CaMgSi2O6−CO2 P-T phase diagram at 3–6 GPa. Am Miner Press. https://doi.org/10.2138/am-2022-8588

    Article  Google Scholar 

  • Smith EM, Kopylova MG, Frezzotti ML, Afanasiev VP (2015) Fluid inclusions in Ebelyakh diamonds: evidence of CO2 liberation in eclogite and the effect of H2O on diamond habit. Lithos 216:106–117

    Article  Google Scholar 

  • Sokol AG, Pal’yanov YN, Pal’yanova GA, Khokhryakov AF, Borzdov YM (2001) Diamond and graphite crystallization from C-O-H fluids under high pressure and high temperature conditions. Diam Relat Mater 10(12):2131–2136

    Article  Google Scholar 

  • Taylor LA, Neal CR (1989) Eclogites with oceanic crustal and mantle signatures from the Bellsbank kimberlite, South Africa, part I: mineralogy, petrography, and whole rock chemistry. J Geol 97(5):551–567

    Article  Google Scholar 

  • Thomsen TB, Schmidt MW (2008) Melting of carbonated pelites at 2.5–5.0 GPa, silicate–carbonatite liquid immiscibility, and potassium–carbon metasomatism of the mantle. Earth Planet Sci Lett 267(1):17–31

    Article  Google Scholar 

  • Tomilenko AA, Ragozin AL, Shatskii VS, Shebanin AP (2001) Variation in the fluid phase composition in the process of natural diamond crystallization. Dokl Earth Sci 379(5):571–574

    Google Scholar 

  • Vinogradova YG, Shatskiy AF, Litasov KD (2021) Thermodynamic analysis of the reactions of CO2-fluid with garnets and clinopyroxenes at 3–6 GPa. Geochem Int 59(9):851–857. https://doi.org/10.1134/S0016702921080103

    Article  Google Scholar 

  • Vinogradova YG, Shatskiy A, Arefiev AV, Litasov KD (2023) The equilibrium boundary of the reaction Mg3Al2Si3O12 + 3CO2 = Al2SiO5 + 2SiO2 + 3MgCO3 at 3–6 GPa. Am Miner. https://doi.org/10.2138/am-2022-869610.2138/am-2022-8696

    Article  Google Scholar 

  • Wyllie PJ, Huang WL (1975) Inflence of mantle CO2 ingeneration of carbonatites and kimberlites. Nature 257(5524):297–299

    Article  Google Scholar 

  • Wyllie P, Huang W-L, Otto J, Byrnes A (1983) Carbonation of peridotites and decarbonation of siliceous dolomites represented in the system CaO-MgO-SiO2-CO2 to 30 kbar. Tectonophysics 100(1–3):359–388

    Article  Google Scholar 

  • Yaxley GM, Brey GP (2004) Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: implications for petrogenesis of carbonatites. Contrib Mineral Petrol 146(5):606–619. https://doi.org/10.1007/s00410-003-0517-3

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Dante Canil for editorial handling and comments and two anonymous referees for reviews, which helped to improve manuscript; Ivan V. Podborodnikov and Altyna Bekhtenova for technical support; Anatoly T. Titiv and Nikolay S. Karmanov for their help in the analytical work. This work was financially supported by Russian Science Foundation (project No 21-17-00024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Shatskiy.

Additional information

Communicated by Dante Canil.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 6438 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shatskiy, A., Vinogradova, Y.G., Arefiev, A.V. et al. The system NaAlSi2O6‒CaMgSi2O6−CO2 at 3–6.5 GPa: implications for CO2 stability in the eclogitic suite at depths of 100–200 km. Contrib Mineral Petrol 178, 22 (2023). https://doi.org/10.1007/s00410-023-01999-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-023-01999-w

Keywords

Navigation