Skip to main content
Log in

Early magmatic history of the IBM arc inferred from volcanic minerals and melt inclusions from early–late Oligocene DSDP Site 296: a mineral–melt partition approach

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The magmatic history of the early Izu-Bonin-Mariana (IBM) arc forms a gap between a growing understanding of Eocene subduction and IBM arc initiation in the western Pacific, and Miocene- recent IBM arc processes. Fresh volcanic minerals in lapilli tuffs drilled at DSDP Site 296 on the northern Kyushu Palau Ridge (KPR) provide an opportunity to understand the early–late Oligocene magmatic evolution of the IBM arc leading up to arc rifting and opening of the Shikoku back-arc basin. In this study, we use major and trace element compositions of feldspar, amphibole and pyroxene, with melt inclusions, to infer KPR magma compositions, crystallization temperatures and pressures, and temporal sequence. A major finding of this approach is that inferred magma compositions span a wider range of trace element variation than that inferred from basaltic to dacitic glass shards within the tuffs. Elemental and thermobarometric data for clinopyroxene indicate the presence of mafic, incompatible element-depleted (Nb/Yb < 0.3 and La/SmN < 1.4) magmas that crystallized at shallow depths, and incompatible element-enriched (Nb/Yb = 8.1 and La/SmN = 6.5), mafic, amphibole-bearing arc magmas that either crystallized over a range of pressures or without reaching plagioclase saturation. We interpret the incompatible element-depleted magmas as decompression melts of a shallow BABB source mantle and the incompatible element-enriched type as mature, water-rich arc magmas. The occurrence of both types of magma in several lapilli tuff intervals in the drilled section suggests that arc extension and rifting was a gradual process leading to multiple events of decompression melting interspersed with the eruption of mature arc magma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Allen JC, Boettcher AL (1983) The stability of amphibole in andesite and basalt at high pressures. Am Miner 68(3–4):307–314

    Google Scholar 

  • Anderson JL, Smith DR (1995) The effects of temperature and f (sub O2) on the Al-in-hornblende barometer. Am Mineralogist 80(5–6):549–559

    Google Scholar 

  • Arculus RJ, Wills KJA (1980) The petrology of plutonic blocks and inclusions from the Lesser Antilles island arc. J Petrol 21(4):743–799

    Google Scholar 

  • Arculus RJ, Bloomfield AL, Fryer P et al (1992) Major-element geochemistry of ashes from Sites 782, 784 and 786 in the Bonin forearc. Proc Ocean Drilling Program Scientific Results 125:277–292

    Google Scholar 

  • Arculus RJ, Ishizuka O, Bogus KA et al (2015a) A record of spontaneous subduction initiation in the Izu-Bonin-Mariana Arc. Nat Geosci 8(9):728–733

    Google Scholar 

  • Arculus R, Ishizuka O, Bogus K et al (2015b) International Ocean Discovery Program Expedition 351 preliminary report; Izu-Bonin-Mariana Arc origins; continental crust formation at an intraoceanic arc; foundation, inception, and early evolution; 30 May–30 July 2014: Preliminary Report (International Ocean Discovery Program), vol. 351

  • Arculus RJ, Gill JB, Cambray H, Chen W, Stern RJ, Taylor B, Natland J (1995) Geochemical evolution of arc systems in the western Pacific; the ash and turbidite record recovered by drilling. Geophys Monograph 88:45–65

    Google Scholar 

  • Bacon CR, Druitt TH (1988) Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama Crater Lake, Oregon. Contrib Mineral Petrology 98(2):224–256

    Google Scholar 

  • Baker DR, Eggler DH (1983) Fractionation paths of Atka (Aleutians) high-alumina basalts; constraints from phase relations. J Volcanol Geothermal Res 18(1–4):387–404

    Google Scholar 

  • Barth AP, Tani K, Meffre S et al (2017) Generation of silicic melts in the early Izu-Bonin Arc recorded by detrital zircons in proximal arc volcaniclastic rocks from the Philippine Sea. Geochem Geophys Geosyst G3 18(10):3576–3591

    Google Scholar 

  • Blundy J, Wood B (2003) Partitioning of trace elements between crystals and melts. Earth Planet Sci Lett 210(3–4):383–397

    Google Scholar 

  • Brandl PA, Hamada M, Arculus RJ et al (2017) The arc arises; the links between volcanic output, arc evolution and melt composition. Earth Planet Sci Lett 461:73–84

    Google Scholar 

  • Bryant CJ, Arculus RJ, Eggins SM (2003) The geochemical evolution of the Izu-Bonin Arc system; a perspective from tephras recovered by deep-sea drilling. Geochem Geophys Geosyst. https://doi.org/10.1029/2002GC000427

    Article  Google Scholar 

  • D’Antonio M, Savov I, Spadea P, Hickey-Vargas R, Lockwood J (2006) Petrogenesis of Eocene oceanic basalts from the West Philippine Basin and Oligocene arc volcanics from the Palau-Kyushu Ridge drilled at 20 degrees N, 135 degrees E (Western Pacific Ocean). Ofioliti 31(2):173–187

    Google Scholar 

  • Davidson J, Turner S, Handley H, Macpherson C, Dosseto A (2007) Amphibole “sponge” in arc crust? Geology (boulder) 35(9):787–790

    Google Scholar 

  • Debari SM, Coleman RG (1989) Examination of the deep levels of an island arc; evidence from the Tonsina ultramafic-mafic assemblage Tonsina, Alaska. J Geophys Res 94(B4):4373–4391

    Google Scholar 

  • Debari S, Kay SM, Kay RW (1987) Ultramafic xenoliths from Adagdak Volcano, Adak, Aleutian Islands, Alaska; deformed igneous cumulates from the Moho of an island arc. J Geol 95(3):329–341

    Google Scholar 

  • Dostal J, Dupuy C, Carron JP, Guen Le, de Kerneizon M, Maury RC (1983) Partition coefficients of trace elements; application to volcanic rocks of St. Vincent, West Indies. Geochim Cosmochim Acta 47(3):525–533

    Google Scholar 

  • Elliott T, Plank T, Zindler A, White W, Bourdon B (1997) Element transport from slab to volcanic front at the Mariana Arc. J Geophys Res 102(B7):14991–15019

    Google Scholar 

  • Erdmann S, Martel C, Pichavant M, Kushnir A (2014) Amphibole as an archivist of magmatic crystallization conditions; problems, potential, and implications for inferring magma storage prior to the paroxysmal 2010 eruption of Mount Merapi, Indonesia. Contrib Mineral Petrol https://doi.org/10.1007/s00410-014-1016-4

  • Ewart A, Griffin WL (1994) Application of proton-microprobe data to trace-element partitioning in volcanic rocks. Chem Geol 117(1–4):251–284

    Google Scholar 

  • Gallahan WE, Nielsen RL (1992) The partitioning of Sc, Y, and the rare earth elements between high-Ca pyroxene and natural mafic to intermediate lavas at 1 atmosphere. Geochim Cosmochim Acta 56(6):2387–2404

    Google Scholar 

  • Griffin W, Powell W, Pearson NJ, O’Reilly S (2008) GLITTER: data reduction software for laser ablation ICP-MS. In: Paul S (eds), Laser ablation–ICP–MS in the earth sciences current practices and outstanding issues 40, pp 308–311

  • Hack PJ, Nielsen RL, Johnston AD (1994) Experimentally determined rare-earth element and Y partitioning behavior between clinopyroxene and basaltic liquids at pressures up to 20 kbar. Chem Geol 117(1–4):89–105

    Google Scholar 

  • Hamada M, Iwamori H, Brandl PA et al (2020) Temporal evolution of proto-Izu-Bonin-Mariana Arc volcanism over 10 myr; constraints from statistical analysis of melt inclusion compositions. J Petrology 61(1):egaa022

    Google Scholar 

  • Haraguchi S, Ishii T, Kimura J, Kato Y (2012) The early Miocene ( approximately 25 Ma) volcanism in the northern Kyushu-Palau Ridge, enriched mantle source injection during rifting prior to the Shikoku back-arc basin opening. Contrib Mineral Petrol 163(3):483–504

    Google Scholar 

  • Haraguchi S, Ishii T, Kimura J, Ohara Y (2003) Formation of tonalite from basaltic magma at the Komahashi-Daini Seamount, northern Kyushu-Palau Ridge in the Philippine Sea, and growth of Izu-Ogasawara (Bonin)-Mariana arc crust. Contrib Mineral Petrol 145(2):151–168

    Google Scholar 

  • Hart SR, Brooks C (1974) Clinopyroxene-matrix partitioning of K, Rb, Cs, Sr and Ba. Geochim Cosmochim Acta 38(12):1799–1806

    Google Scholar 

  • Hart SR, Dunn T (1993) Experimental cpx/melt partitioning of 24 trace elements. Contrib Mineral Petrol 113(1):1–8

    Google Scholar 

  • Hauri EH, Wagner TP, Grove TL (1994) Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chem Geol 117(1–4):149–166

    Google Scholar 

  • Hochstaedter A, Gill J, Peters R, Broughton P, Holden P, Taylor B (2001) Across-arc geochemical trends in the Izu-Bonin arc; contributions from the subducting slab. Geochem Geophys Geosyst G3 2(7):2000GC000105

    Google Scholar 

  • Humphreys MCS, Cooper GF, Zhang J et al (2019) Unravelling the complexity of magma plumbing at Mount St. Helens: a new trace element partitioning scheme for amphibole. Contrib Mineral Petrol. https://doi.org/10.1007/s00410-018-1543-5

    Article  Google Scholar 

  • Ingle JC Jr, Karig DE, Bouma AH et al (1975) Site 296: Initial reports of the deep sea drilling project, vol. 31, pp 191–274

  • Ishizuka O, Kimura J, Li YB et al (2006) Early stages in the evolution of Izu-Bonin Arc volcanism; new age, chemical, and isotopic constraints. Earth Planet Sci Lett 250(1–2):385–401

    Google Scholar 

  • Ishizuka O, Tani K, Reagan MK et al (2011a) The timescales of subduction initiation and subsequent evolution of an oceanic island arc. Earth Planet Sci Lett 306(3–4):229–240

    Google Scholar 

  • Ishizuka O, Taylor RN, Yuasa M, Ohara Y (2011b) Making and breaking an island arc; a new perspective from the Oligocene Kyushu-Palau Arc, Philippine Sea. Geochem Geophys Geosyst G3 12(5):Q05005

    Google Scholar 

  • Ishizuka O, Taylor RN, Umino S, Kanayama K (2020) Geochemical evolution of arc and slab following subduction initiation; a record from the Bonin Islands, Japan. J Petrol 61(5):egaa50

    Google Scholar 

  • Jenner GA, Foley SF, Jackson SE, Green TH, Fryer BJ, Longerich HP (1993) Determination of partition coefficients for trace elements in high pressure-temperature experimental run products by laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS). Geochim Cosmochim Acta 57(23–24):5099–5103

    Google Scholar 

  • Johnson KTM (1994) Experimental cpx/ and garnet/melt partitioning of REE and other trace elements at high pressures; petrogenetic implications. Mineral Magazine 58A(A-K):454–455

    Google Scholar 

  • Karig DE (1975) Basin genesis in the Philippine Sea: initial reports of the deep sea drilling project, vol. 31, pp 857–879

  • Kay SM, Kay RW (1985) Aleutian tholeiitic and calc-alkaline magma series; 1, The mafic phenocrysts. Contrib Miner Petrol 90(2–3):276–290

    Google Scholar 

  • Klemme S, Blundy JD, Wood BJ (2002) Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochim Cosmochim Acta 66(17):3109–3123

    Google Scholar 

  • Kobayashi K, Kasuga S, Okino K (1995) Shikoku Basin and its margins. Plenum Press, New York

    Google Scholar 

  • Krawczynski MJ, Grove TL, Behrens H (2012) Amphibole stability in primitive arc magmas; effects of temperature, H (sub 2) O content, and oxygen fugacity. Contrib Mineral Petrol 164(2):317–339

    Google Scholar 

  • Larocque J, Canil D (2010) The role of amphibole in the evolution of arc magmas and crust; the case from the Jurassic Bonanza Arc section, Vancouver Island, Canada. Contrib Mineral Petrol 159(4):475–492

    Google Scholar 

  • Leake BE, Woolley AR, Arps CES et al (1997) Nomenclature of amphiboles; report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Can Mineral 35:219–246

    Google Scholar 

  • Lee J, Stern RJ, Bloomer SH (1995) Forty million years of magmatic evolution in the Mariana arc; the tephra glass record. J Geophys Res 100(9):17671–17687

    Google Scholar 

  • Leng W, Gurnis M (2015) Subduction initiation at relic arcs. Geophys Res Lett 42(17):7014–7021

    Google Scholar 

  • Leterrier J, Maury RC, Thonon P, Girard D, Marchal M (1982) Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series. Earth Planet Sci Lett 59(1):139–154

    Google Scholar 

  • Luhr JF, Carmichael ISE (1980) The Colima volcanic complex, Mexico; I, Post-caldera andesites from Volcan Colima. Contrib Miner Petrol 71(4):343–372

    Google Scholar 

  • Maunder, B., Prytulak, J., Goes, S., and Reagan, M., 2020, Rapid subduction initiation and magmatism in the Western Pacific driven by internal vertical forces. Nature Communications, v. 11, no. 1874.

  • Nandedkar RH, Ulmer P, Muntener O (2014) Fractional crystallization of primitive, hydrous arc magmas; an experimental study at 0.7 GPa. Contrib Mineral Petrol. https://doi.org/10.1038/s41467-020-15737-4

    Article  Google Scholar 

  • Nandedkar RH, Hurlimann N, Ulmer P, Muntener O (2016) Amphibole-melt trace element partitioning of fractionating calc-alkaline magmas in the lower crust; an experimental study. Contrib Mineral Petrol 171(8–9):71

    Google Scholar 

  • Nicholls IA, Harris KL (1980) Experimental rare earth element partition coefficients for garnet, clinopyroxene and amphibole coexisting with andesitic and basaltic liquids. Geochim Cosmochim Acta 44(2):287–308

    Google Scholar 

  • Nimis P (1995) A clinopyroxene geobarometer for basaltic systems based on crystal-structure modeling. Contrib Miner Petrol 121(2):115–125

    Google Scholar 

  • Nimis P (1999) Clinopyroxene geobarometry of magmatic rocks Part 2 Structural geobarometers for basic to acid, tholeiitic and mildly alkaline magmatic systems. Contrib Mineral Petrol 135(1):62–74

    Google Scholar 

  • Nimis P, Ulmer P (1998) Clinopyroxene geobarometry of magmatic rocks; Part 1, An expanded structural geobarometer for anhydrous and hydrous, basic and ultrabasic systems. Contrib Miner Petrol 133(1–2):122–135

    Google Scholar 

  • O’Hara MJ (1995) Trace element geochemical effects of integrated melt extraction and “shaped” melting regimes. J Petrol 36(4):1111–1132

    Google Scholar 

  • Okino K, Shimakawa Y, Nagaoka S (1994) Evolution of the Shikoku Basin. J Geomagn Geoelectr 46(6):463–479

    Google Scholar 

  • Ozima M, Kaneoka I, Ujiie H (1977) (super 40) Ar- (super 39) Ar age of rocks, and the development mode of the Philippine Sea. Nature (london) 267(5614):816–818

    Google Scholar 

  • Pearce JA, Stern RJ, Bloomer SH, Fryer P (2005) Geochemical mapping of the Mariana arc-basin system; implications for the nature and distribution of subduction components. Geochem Geophys Geosyst. https://doi.org/10.1029/2004GC000895

    Article  Google Scholar 

  • Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol 58(1):63–81

    Google Scholar 

  • Perfit MR, Gust DA, Bence AE, Arculus RJ, Taylor SR, Le Maitre RW, Cundari A (1980) Chemical characteristics of island-arc basalts; implications for mantle sources. Chem Geol 30(3):227–256

    Google Scholar 

  • Prowatke S, Klemme S (2006) Trace element partitioning between apatite and silicate melts. Geochim Cosmochim Acta 70(17):4513–4527

    Google Scholar 

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69(1):61–120

    Google Scholar 

  • Putirka K (2016) Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. Am Miner 101(4):841–858

    Google Scholar 

  • Reagan MK, Ishizuka O, Stern RJ et al (2010) Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system. Geochem Geophys Geosyst G3 11(3):Q03X12

    Google Scholar 

  • Reagan MK, Heaton DE, Schmitz MD, Pearce JA, Shervais JW, Koppers AAP (2019) Forearc ages reveal extensive short-lived and rapid seafloor spreading following subduction initiation. Earth Planet Sci Lett 506:520–529

    Google Scholar 

  • Ridolfi F, Renzulli A (2012) Calcic amphiboles in calc-alkaline and alkaline magmas; thermobarometric and chemometric empirical equations valid up to 1.130 degrees C and 2.2 GPa. Contrib Mineral Petrol 163(5):877–895

    Google Scholar 

  • Ronov AB, Yaroshevskiy AA (1976) A new model for the chemical structure of the Earth’s crust. Geochem Int 13(6):89–121

    Google Scholar 

  • Ryan WBF, Carbotte SM, Coplan JO et al (2009) Global Multi-Resolution Topography synthesis. Geochem Geophys Geosyst G3 10(3):Q03014

    Google Scholar 

  • Samajpati E, Hickey-Vargas R (2020) Geochemistry of volcanic glass from oligocene detrital sediments at DSDP Site 296, Kyushu Palau ridge interpreting the magmatic evolution of the early Northern Izu Bonin Mariana Island Arc. Island Arc https://doi.org/10.1111/iar.12355

  • Savov IP, Hickey-Vargas R, D’Antonio M, Ryan JG, Spadea P (2006) Petrology and geochemistry of West Philippine Basin basalts and early Palau-Kyushu Arc volcanic clasts from ODP Leg 195, Site 1201D; implications for the early history of the Izu-Bonin-Mariana Arc. J Petrol 47(2):277–299

    Google Scholar 

  • Schnetzler CC, Philpotts JA (1970) Partition coefficients of rare-earth elements between igneous matrix material and rock-forming mineral phenocrysts; II. Geochim Cosmochim Acta 34(3):331–340

    Google Scholar 

  • Shaw DM (2000) Continuous (dynamic) melting theory revisited. Can Mineral 38:1041–1063

    Google Scholar 

  • Shimizu K, Liang Y, Sun C, Jackson CRM, Saal AE (2017) Parameterized lattice strain models for REE partitioning between amphibole and silicate melt. Am Miner 102(11):2254–2267

    Google Scholar 

  • Sisson TW, Grove TL (1993) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113(2):143–166

    Google Scholar 

  • Smith DJ (2014) Clinopyroxene precursors to amphibole sponge in arc crust. Nat Comm. https://doi.org/10.1038/ncomms5329

    Article  Google Scholar 

  • Stern RJ, Morris JD, Bloomer SH, Hawkins JW Jr (1991) The source of the subduction component in convergent margin magmas; trace element and radiogenic isotope evidence from Eocene boninites, Mariana Forearc. Geochim Cosmochim Acta 55(5):1467–1481

    Google Scholar 

  • Stern RJ, Jackson MC, Fryer P, Ito E (1993) O, Sr, Nd and Pb isotopic composition of the Kasuga Cross-Chain in the Mariana Arc; a new perspective on the K-h relationship. Earth Planet Sci Lett 119(4):459–475

    Google Scholar 

  • Stern RJ, Fouch MJ, Klemperer SL, Eiler JM (2003) An overview of the Izu-Bonin-Mariana subduction factory. Geophys Monograph 138:175–222

    Google Scholar 

  • Straub SM (2003) The evolution of the Izu Bonin-Mariana volcanic arcs (NW Pacific) in terms of major element chemistry. Geochem Geophys Geosyst G3. https://doi.org/10.1029/2002GC000357

    Article  Google Scholar 

  • Straub SM (2008) Uniform processes of melt differentiation in the central Izu Bonin volcanic arc (NW Pacific). Geol Soc Special Publications 304:261–283

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. Geol Soc Special Publications 42:313–345

    Google Scholar 

  • Taylor B, Fujioka K, Janecek TR et al (1992) Rifting and the volcanic-tectonic evolution of the Izu-Bonin-Mariana Arc. Proc Ocean Drilling Program Scientific Results 126:627–651

    Google Scholar 

  • Taylor RN, Nesbitt RW, Smellie JL (1994) Arc volcanism in an extensional regime at the initiation of subduction; a geochemical study of Hahajima, Bonin Islands, Japan. Special Publication - Geol Soc London 81:115–134

    Google Scholar 

  • Watson EB, Ryerson FJ (1986) Partitioning of zirconium between clinopyroxene and magmatic liquids of intermediate composition. Geochim Cosmochim Acta 50(11):2523–2526

    Google Scholar 

  • Yamazaki T, Stern RJ (1997) Topography and magnetic vector anomalies in the Mariana Trough. JAMSTEC J Deep Sea Res 13:31–45

    Google Scholar 

  • Zhang J, Humphreys MCS, Cooper GF, Davidson JP, Macpherson CG (2017) Magma mush chemistry at subduction zones, revealed by new melt major element inversion from calcic amphiboles. Am Mineralogist 10(6):1353–1367

    Google Scholar 

Download references

Acknowledgements

This research was supported by NSF grant OCE 15377861 to Rosemary Hickey-Vargas. We gratefully acknowledge the contribution of Gabriela Fernandez in preparing the smear slides for the core samples. We also thank Thomas Beasley of the Florida Center for Analytical Electron Microscopy (FCAEM) at FIU for assistance with EPMA analyses and Dr. Sarah Jantzi of the Trace Evidence Analysis Facility (TEAF) at FIU for assistance with LA-ICP-MS analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eshita Samajpati.

Additional information

Communicated by Timothy L. Grove.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 208 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samajpati, E., Hickey-Vargas, R. Early magmatic history of the IBM arc inferred from volcanic minerals and melt inclusions from early–late Oligocene DSDP Site 296: a mineral–melt partition approach. Contrib Mineral Petrol 177, 41 (2022). https://doi.org/10.1007/s00410-022-01909-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-022-01909-6

Keywords

Navigation