Skip to main content
Log in

Constraining the isotopic endmembers contributing to 1.1 Ga Keweenawan large igneous province magmatism

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Continental flood basalt lavas often contain deeply-sourced, thermo-chemically anomalous material that can provide a potential probe of inaccessible reservoirs. However, continental flood basalts interact with geochemically diverse domains within the continental lithosphere, which may complicate interpretations of deep mantle signatures. We examine the role of continental lithospheric mantle in continental flood basalts erupted as part of the 1.1 Ga Keweenawan large igneous province, centered on the Lake Superior region of North America. We show that flood basalts at Mamainse Point exhibit a range of εHf 1100 from −14.1 to +6, plotting along the global εHf—εNd mantle array. Lithospheric mantle melts represented by alkaline rocks from the Coldwell and Seabrook Lake Complexes yield positive εNd 1100 (+0.7 to +4.3) and εHf 1100 from −6.9 to +2.4, placing them below the mantle array. Mamainse Point lavas are interpreted to be variably crustally contaminated melts of the Keweenawan plume and ambient upper mantle; there is no clear evidence for contributions from an enriched lithospheric mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

adapted from Fairchild et al. (2017) and Davis et al. (2021). Alkaline magma sampling locations are shown as stars. Yellow box outlines our study area at Mamainse Point. NSVG North Shore Volcanic Group

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Annells RN (1973) Proterozoic flood basalts of eastern Lake Superior: the Keweenawan volcanic rocks of the Mamainse Point area. Ontario: Canadian Geological Survey Paper 72–10

  • Arndt NT, Christensen U (1992) The role of lithospheric mantle in continental flood volcanism: thermal and geochemical constraints. J Geophys Res Solid Earth 97:10967–10981

    Article  Google Scholar 

  • Arndt NT, Czamanske GK, Walker RJ, Chauvel C, Fedorenko VA (2003) Geochemistry and origin of the intrusive hosts of the Noril’sk-Talnakh Cu-Ni-PGE sulfide deposits. Econ Geol 98:495–515

    Google Scholar 

  • Arndt NT, Coltice N, Helmstaedt H, Gregoire M (2009) Origin of Archean subcontinental lithospheric mantle: Some petrological constraints. Cont Lithospheric Mantle: The Petro-Geophysical Approach 109:61–71. https://doi.org/10.1016/j.lithos.2008.10.019

    Article  Google Scholar 

  • Ayer J, Amelin Y, Corfu F, Kamo S, Ketchum J, Kwok K, Trowell N (2002) Evolution of the southern Abitibi greenstone belt based on U-Pb geochronology: autochthonous volcanic construction followed by plutonism, regional deformation and sedimentation. Precambrian Res 115:63–95

    Article  Google Scholar 

  • Baker J, Chazot G, Menzies M, Thirlwall M (1998) Metasomatism of the shallow mantle beneath Yemen by the Afar plume - Implications for mantle plumes, flood volcanism, and intraplate volcanism. Geology 26:431–434

    Article  Google Scholar 

  • Birhanu Y, Bendick R, Fisseha S, Lewi E, Floyd M, King R, Reilinger R (2016) GPS constraints on broad scale extension in the Ethiopian Highlands and Main Ethiopian Rift. Geophys Res Lett 43:6844–6851

    Article  Google Scholar 

  • Bizimis M, Sen G, Salters VJ (2004) Hf–Nd isotope decoupling in the oceanic lithosphere: constraints from spinel peridotites from Oahu Hawaii. Earth Planet Sci Lett 217:43–58

    Article  Google Scholar 

  • Bleeker, W., Liikane, D.A., Smith, J., Hamilton, M., Kamo, S.L., Cundari, M., Easton, R.M., and Hollings, P., 2018, Controls on the localization and timing of mineralized intrusions in intra-continental rift systems, with a specific focus on the ca. 1.1 Ga Mid-continent Rift system: Geological Survery of Canada Targeted Geoscience Initiative: 2017 report of activities, Volume 2 Open File 8373

  • Bodinier JL, Vasseur G, Vernieres J, Dupuy C, Fabries J (1990) Mechanisms of mantle metasomatism: geochemical evidence from the Lherz orogenic peridotite. J Petrol 31:597–628

    Article  Google Scholar 

  • Bohrson WA, Spera FJ, Ghiorso MS, Brown GA, Creamer JB, Mayfield A (2014) Thermodynamic model for energy-constrained open-system evolution of crustal magma bodies undergoing simultaneous recharge, assimilation and crystallization: the magma chamber simulator. J Petrol 55:1685–1717

    Article  Google Scholar 

  • Boyd FR (1989) Compositional distinction between oceanic and cratonic lithosphere. Earth Planet Sci Lett 96:15–26

    Article  Google Scholar 

  • Brannon JC (1984) Geochemistry of sucessive lava flows of the Keweenawan North Shore Volcanic group. Washington University, St. Louis

    Google Scholar 

  • Cannon WF, Davis DW, Nicholson SW, Peterman ZE Zartman RE (1993) The Kallander Creek Volcanics—A remnant of a Keweenawan central volcano centered near Mellen: Wisconsin [abs.]: Annual Institute on Lake Superior Geology, 39th, Eveleth, Minnesota 39: 20–21

  • Cannon WF, Hinze WJ (1992) Speculations on the origin of the North American Midcontinent rift. Tectonophysics 213:49–55

    Article  Google Scholar 

  • Cannon WF, Kress TH, Sutphin DM, Morey GB, Meints J (1997) Digital geologic map and mineral deposits of the Lake Superior region; Minnesota, Wisconsin, Michigan: USGS Open-File Report 97–455

  • Cannon WF (1994) Closing of the Midcontinent rift-A far—field effect of Grenvillian compression. Geology 22:155–158

    Article  Google Scholar 

  • Chauvel C, Lewin E, Carpentier M, Arndt NT, Marini J-C (2008) Role of recycled oceanic basalt and sediment in generating the Hf–Nd mantle array. Nat Geosci 1:64

    Article  Google Scholar 

  • Chernet T, Hart WK, Aronson JL, Walter RC (1998) New age constraints on the timing of volcanism and tectonism in the northern Main Ethiopian Rift-southern Afar transition zone (Ethiopia). J Volcanol Geothermal Res 80:267–280

    Article  Google Scholar 

  • Ciborowski TJR, Kerr AC, Ernst RE, McDonald I, Minifie MJ, Harlan SS, Millar IL (2015) The early proterozoic matachewan large igneous province: geochemistry, petrogenesis, and implications for earth evolution. J Petrol 56:1459–1494. https://doi.org/10.1093/petrology/egv038

    Article  Google Scholar 

  • Ciborowski TJR, Minifie MJ, Kerr AC, Ernst RE, Baragar B, Millar IL (2017) A mantle plume origin for the Palaeoproterozoic Circum-Superior Large Igneous Province. Precambrian Res 294:189–213. https://doi.org/10.1016/j.precamres.2017.03.001

    Article  Google Scholar 

  • Connelly JN, Ulfbeck DG, Thrane K, Bizzarro M, Housh T (2006) A method for purifying Lu and Hf for analyses by MC-ICP-MS using TODGA resin. Chem Geol 233:126–136

    Article  Google Scholar 

  • Davis WR, Collins MA, Rooney TO, Brown EL, Stein CA, Stein S, Moucha R (2021) Geochemical, petrographic, and stratigraphic analyses of the Portage Lake Volcanics of the Keweenawan CFBP: implications for the evolution of Main stage volcanism in Continental Flood Basalt Provinces. Geol Soc Lond Special Publ. https://doi.org/10.1144/SP518-2020-221

    Article  Google Scholar 

  • Davis DW, Green JC (1997) Geochronology of the North American Midcontinent rift in western Lake Superior and implications for its geodynamic evolution. Can J Earth Sci 34:476–488. https://doi.org/10.1139/e17-039

    Article  Google Scholar 

  • Ding X, Ripley EM, Shirey SB, Li C (2012) Os, Nd, O and S isotope constraints on country rock contamination in the conduit-related Eagle Cu–Ni–(PGE) deposit Midcontinent Rift System, Upper Michigan. Geochim Cosmochim Acta 89:10–30

    Article  Google Scholar 

  • Dosso L (1984) The nature of the Precambrian subcontinental lithospheric mantle: Isotopic study (Sr, Nd, Pb) of the Keweenawan volcanism of the North Shore of Lake Superior. University of Minnesota, Minneapolis

    Google Scholar 

  • Doucet LS, Ionov DA, Golovin AV (2015) Paleoproterozoic formation age for the Siberian cratonic mantle: Hf and Nd isotope data on refractory peridotite xenoliths from the Udachnaya kimberlite. Chem Geol 391:42–55

    Article  Google Scholar 

  • Elling RP, Stein S, Stein CA, Keller GR (2020) Tectonic implications of the gravity signatures of the Midcontinent Rift and Grenville Front. Tectonophysics 778:228369

    Article  Google Scholar 

  • Ernst RE (2014) Large igneous provinces. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ernst RE, Bell K (1992) Petrology of the Great Abitibi Dyke, Superior Province, Canada. J Petrol 33:423–469. https://doi.org/10.1093/petrology/33.2.423

    Article  Google Scholar 

  • Ernst RE, Davies DR, Jowitt SM, Campbell IH (2018) When do mantle plumes destroy diamonds? Earth Planet Sci Lett 502:244–252

    Article  Google Scholar 

  • Ernst R, Bleeker W (2010) Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2.5 Ga to the PresentThis article is one of a selection of papers published in this Special Issue on the the theme Lithoprobe—parameters, processes, and the evolution of a continent.Lithoprobe Contribution 1482. Geological Survey of Canada Contribution 20100072. Can J Earth Sci 47: 695–739. doi:https://doi.org/10.1139/E10-025

  • Ernst, R.E., and Buchan, K.L., 1997, Giant radiating dyke swarms: their use in identifying pre-Mesozoic large igneous provinces and mantle plumes. In Mahoney J and Coffin M (eds.) Mantle plumes: their identification through time. Geol. Soc. America Spec. Paper 352: 247–265

  • Ernst RE, Bond DP, Zhang S-H, Buchan KL, Grasby SE, Youbi N, El Bilali H, Bekker A, Doucet LS (2021) Large igneous province record through time and implications for secular environmental changes and geological time-scale boundaries. In: Ernst RE, Dickson AJ, Bekker A (eds) Large Igneous Provinces. Geophysical Monograph Series, American Geophysical Union, Wiley. https://doi.org/10.1002/9781119507444.ch1

  • Fairchild LM, Swanson-Hysell NL, Ramezani J, Sprain CJ, Bowring SA (2017) The end of midcontinent rift magmatism and the paleogeography of Laurentia. Lithosphere 9:117–133. https://doi.org/10.1130/l580.1

    Article  Google Scholar 

  • Fedorenko VA, Lightfoot PC, Naldrett AJ, Czamanske GK, Hawkesworth CJ, Wooden JL, Ebel DS (1996) Petrogenesis of the flood-basalt sequence at Noril’sk, north central Siberia. Int Geol Rev 38:99–135

    Article  Google Scholar 

  • Ferguson DJ, Barnie TD, Pyle DM, Oppenheimer C, Yirgu G, Lewi E, Kidane T, Carn S, Hamling IJ (2010) Recent rift-related volcanism in Afar, Ethiopia. Earth Planet Sci Lett 292:409–418. https://doi.org/10.1016/j.epsl.2010.02.010

    Article  Google Scholar 

  • Feyissa DH, Kitagawa H, Bizuneh TD, Tanaka R, Kabeto K, Nakamura E (2019) Transition from plume-driven to plate-driven magmatism in the evolution of the main Ethiopian rift. J Petrol 60:1681–1715. https://doi.org/10.1093/petrology/egz043

    Article  Google Scholar 

  • Furman T, Graham D (1999) Erosion of lithospheric mantle beneath the East African Rift system; geochemical evidence from the Kivu volcanic province. Lithos 48:237–262

    Article  Google Scholar 

  • Garnero EJ, McNamara AK (2008) Structure and dynamics of Earth’s lower mantle. Science 320:626–628

    Article  Google Scholar 

  • Gittins J, Macintyre RM, York D (1967) The ages of carbonatite complexes in eastern Canada. Can J Earth Sci 4:651–655

    Article  Google Scholar 

  • Good DJ, Lightfoot PC (2019) Significance of the metasomatized lithospheric mantle in the formation of early basalts and Cu–PGE sulfide mineralization in the Coldwell Complex, Midcontinent Rift, Canada. Can J Earth Sci. https://doi.org/10.1139/cjes-2018-0042

    Article  Google Scholar 

  • Good DJ, Hollings P, Dunning G, Epstein R, McBride J, Jedemann A, Magnus S, Bohay T, Shore G (2021) A new model for the coldwell complex and associated dykes of the midcontinent rift Canada. J Petrol 62:egab036

    Article  Google Scholar 

  • Gordon MB, Hempton MR (1986) Collision-induced rifting: The Grenville Orogeny and the Keweenawan Rift of North America. Tectonophysics 127:1–25

    Article  Google Scholar 

  • Green JC (1989) Physical volcanology of mid-Proterozoic plateau lavas: the Keweenawan North Shore volcanic group, Minnesota. Geol Soc Am Bull 101:486–500

    Article  Google Scholar 

  • Griffin WL, Pearson NJ, Belousova E, Jackson SV, Van Achterbergh E, O’Reilly SY, Shee SR (2000) The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64:133–147

    Article  Google Scholar 

  • Hanan BB, Graham DW (1996) Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes. Science 272:991–995

    Article  Google Scholar 

  • Hanmer S, McEachern S (1992) Kinematical and rheological evolution of a crustal-scale ductile thrust zone, Central Metasedimentary Belt, Grenville orogen, Ontario. Can J Earth Sci 29:1779–1790. https://doi.org/10.1139/e92-140

    Article  Google Scholar 

  • Hawkesworth CJ, Lightfoot PC, Fedorenko A, Blake S, Naldrett AJ, Doherty W, Gorbachev NS (1995) Magma differentiation and mineralisation in the Siberian continental flood basalts. Lithos 34:61–88

    Article  Google Scholar 

  • Heaman LM, Machado N (1992) Timing and origin of midcontinent rift alkaline magmatism, North America: evidence from the Coldwell Complex. Contrib Miner Petrol 110:289–303. https://doi.org/10.1007/bf00310744

    Article  Google Scholar 

  • Heaman LM, Easton RM, Hart TR, Hollings P, MacDonald CA, Smyk M (2007) Further refinement to the timing of Mesoproterozoic magmatism, Lake Nipigon region, Ontario. Can J Earth Sci 44:1055–1086

    Article  Google Scholar 

  • Heinonen JS, Iles KA, Heinonen A, Fred R, Virtanen J, Bohrson WA, Spera FJ (2021) From binary mixing to magma chamber simulator. Geochemical modeling of assimilation in magmatic systems. In: Crustal Magmatic System Evolution: Anatomy, Architecture, and Physico‐Chemical Processes: 151–176

  • Hollings P, Smyk M, Heaman LM, Halls H (2010) The geochemistry, geochronology and paleomagnetism of dikes and sills associated with the Mesoproterozoic Midcontinent Rift near Thunder Bay Ontario, Canada. Precambrian Res 183:553–571. https://doi.org/10.1016/j.precamres.2010.01.012

    Article  Google Scholar 

  • Hollings P, Richardson A, Creaser RA, Franklin JM (2007) Radiogenic isotope characteristics of the Mesoproterozoic intrusive rocks of the Nipigon Embayment, northwestern Ontario. Can J Earth Sci 44:1111–1129. https://doi.org/10.1139/e06-128

    Article  Google Scholar 

  • Horan MF, Walker RJ, Fedorenko A, Czamanske GK (1995) Osmium and neodymium isotopic constraints on the temporal and spatial evolution of Siberian flood basalt sources. Geochim Cosmochim Acta 59:5159–5168

    Article  Google Scholar 

  • Huston DL, Champion DC, Cassidy KF (2005) Tectonic controls on the endowment of Archean cratons in VHMS deposits: evidence from Pb and Nd isotopes. In Mineral Deposit Research: Meeting the Global Challenge. Springer, p. 15–18

  • Hutchinson DR, White RS, Cannon WF, Schulz KJ (1990) Keweenaw hot spot: geophysical evidence for a 1.1 Ga mantle plume beneath the midcontinent rift system. J Geophys Res 95:10869–10884. https://doi.org/10.1029/JB095iB07p10869

    Article  Google Scholar 

  • Janoušek V, Moyen J-F, Martin H, Erban V, Farrow C (2016) Geochemical modelling of igneous processes–principles and recipes in R language. Springer, Berlin

    Book  Google Scholar 

  • Jordan TH (1978) Composition and development of the continental tectosphere. Nature 274:544–548

    Article  Google Scholar 

  • Keays RR, Lightfoot PC (2015) Geochemical stratigraphy of the Keweenawan Midcontinent Rift volcanic rocks with regional implications for the genesis of associated Ni Cu Co, and Platinum Group Element Sulfide Mineralization. Econ Geol 110:1235–1267

    Article  Google Scholar 

  • Kidane T, Manighetti V, Courtillot I, Audin L, Lahitte P, Quidelleur X, Gillot P-Y, Gallet Y, Carlut J, Haile T (2003) New paleomagnetic and geochronologic results from Ethiopian Afar: Block rotations linked to rift overlap and propagation and determination of a∼ 2 Ma reference pole for stable Africa. J Geophys Res Solid Earth. https://doi.org/10.1029/2001JB000645

    Article  Google Scholar 

  • Klewin KW, Shirey SB (1992) The igneous petrology and magmatic evolution of the Midcontinent rift system. Tectonophysics 213:33–40

    Article  Google Scholar 

  • Klewin KW, Berg JH (1990) Geochemistry of the Mamainse Point volcanics, Ontario, and implications for the Keweenawan paleomagnetic record. Can J Earth Sci 27:1194–1199. https://doi.org/10.1139/e90-126

    Article  Google Scholar 

  • Klewin KW, Berg JH (1991) Petrology of the Keweenawan Mamainse Point lavas Ontario - Petrogenesis and Continental Rift Evolution. J Geophys Res Solid Earth Planets 96:457–474

    Article  Google Scholar 

  • Knappe E, Bendick R, Ebinger C, Birhanu Y, Lewi E, Floyd M, King R, Kianji G, Mariita N, Temtime T (2020) Accommodation of East African rifting across the Turkana depression. J Geophys Res Solid Earth 125:e2019JB018469

    Article  Google Scholar 

  • Konter JG, Storm LP (2014) High precision 87Sr/86Sr measurements by MC-ICP-MS, simultaneously solving for Kr interferences and mass-based fractionation. Chem Geol 385:26–34

    Article  Google Scholar 

  • Kramers JD, Tolstikhin IN (1997) Two terrestrial lead isotope paradoxes, forward transport modelling, core formation and the history of the continental crust. Chem Geol 139:75–110. https://doi.org/10.1016/S0009-2541(97)00027-2

    Article  Google Scholar 

  • Lahitte P, Gillot P-Y, Kidane T, Courtillot, and Bekele, A., (2003) New age constraints on the timing of volcanism in central Afar, in the presence of propagating rifts. J Geophys Res Solid Earth 108:2123. https://doi.org/10.1029/2001jb001689

    Article  Google Scholar 

  • Lee C-TA, Lee TC, Wu C-T (2014) Modeling the compositional evolution of recharging, evacuating, and fractionating (REFC) magma chambers: implications for differentiation of arc magmas. Geochim Cosmochim Acta 143:8–22

    Article  Google Scholar 

  • Le Gall B, Daoud MA, Maury R, Gasse F, Rolet J, Jalludin M, Caminiti A-M, Moussa N (2015) Geological Map of the Republic of Djibouti. Centre d’Etude et de Recherche de Djibouti (CERD) and CCGM

  • Lightfoot PC, Sutcliffe RH, Doherty W (1991) Crustal contamination identified in Keweenawan Osler Group Tholeiites, Ontario: a trace element perspective. J Geol 99:739–760

    Article  Google Scholar 

  • Lightfoot PC, Sage RP, Doherty W, Naldrett AJ, Sutcliffe RH (1999) Mineral potential of Proterozoic Keweenawan intrusions: Implications of major and trace element geochemical data from bimodal mafic and felsic volcanic sequences of Mamainse Point and the Black Bay Peninsula, Ontario: Ontario Geological Survey 5998

  • Malone DH, Stein CA, Craddock JP, Stein S, Malone JE (2020) Neoproterozoic sedimentation and tectonics of the Laurentian midcontinent: Detrital zircon provenance of the Jacobsville Sandstone Lake Superior Basin, USA and Canada. Terra Nova 32:442–449

    Article  Google Scholar 

  • Manson ML, Halls HC (1997) Proterozoic reactivation of the southern Superior Province and its role in the evolution of the Midcontinent rift. Can J Earth Sci 34:562–575. https://doi.org/10.1139/e17-045

    Article  Google Scholar 

  • McCormick KA, Chamberlain KR, Paterson CJ (2018) U-Pb baddeleyite crystallization age for a Corson diabase intrusion: possible Midcontinent Rift magmatism in eastern South Dakota. Can J Earth Sci 55:111–117. https://doi.org/10.1139/cjes-2017-0140

    Article  Google Scholar 

  • McLelland JM, Selleck BW, Bickford ME (2013) Tectonic evolution of the Adirondack Mountains and Grenville orogen inliers within the USA. Geosci Canada 40(4):318–352

    Article  Google Scholar 

  • McNamara AK (2019) A review of large low shear velocity provinces and ultra low velocity zones: Linking Plate Tectonics and Volcanism to Deep Earth Dynamics – a tribute to Trond H. Torsvik 760:199–220. https://doi.org/10.1016/j.tecto.2018.04.015

    Article  Google Scholar 

  • Merino M, Keller GR, Stein S, Stein C (2013) Variations in Mid-Continent Rift magma volumes consistent with microplate evolution. Geophys Res Lett 40:1513–1516. https://doi.org/10.1002/grl.50295

    Article  Google Scholar 

  • Miller JD, Nicholson SW, Easton RM, Ripley EM, Feinberg JM (2013) Geology and mineral deposits of the 1.1 Ga Midcontinent rift in the Lake Superior Region—an overview: Field guide to the copper-nickel-platinum group element deposits of the Lake Superior Region. Edited by Miller. J Precambrian Res Center Guidebook 13:1–49

    Google Scholar 

  • Navon O, Stolper EM (1987) Geochemical consequences of melt percolation: the upper mantle as a chromatographic column. J Geol 95:285–307

    Article  Google Scholar 

  • Nicholson SW, Schulz KJ, Shirey SB, Green JC (1997) Rift-wide correlation of 1.1 Ga Midcontinent rift system basalts: implications for multiple mantle sources during rift development. Can J Earth Sci 34:504–520. https://doi.org/10.1139/e17-041

    Article  Google Scholar 

  • Nicholson SW, Shirey SB (1990) Midcontinent rift volcanism in the Lake Superior region - Sr Nd, and Pb Isotopic Evidence for a Mantle Plume Origin. J Geophys Res Solid Earth Planets 95:10851–10868

    Article  Google Scholar 

  • O’Hara MJ, Herzberg C (2002) Interpretation of trace element and isotope features of basalts: relevance of field relations, petrology, major element data, phase equilibria, and magma chamber modeling in basalt petrogenesis. Geochim Cosmochim Acta 66:2167–2191. https://doi.org/10.1016/S0016-7037(02)00852-9

    Article  Google Scholar 

  • Paces JB, Bell K (1989) Non-depleted sub-continental mantle beneath the Superior Province of the Canadian Shield: Nd-Sr isotopic and trace element evidence from Midcontinent Rift basalts. Geochim Cosmochim Acta 53:2023–2035

  • Piispa EJ, Smirnov AV, Pesonen LJ, Mitchell RH (2018) Paleomagnetism and geochemistry of∼ 1144-Ma lamprophyre dikes, Northwestern Ontario: implications for the North American Polar Wander and plate velocities. J Geophys Res Solid Earth 123:6195–6214

    Article  Google Scholar 

  • Pilet S, Baker MB, Stolper EM (2008) Metasomatized lithosphere and the origin of Alkaline Lavas. Science 320:916–919. https://doi.org/10.1126/science.1156563

    Article  Google Scholar 

  • Pilet S, Ulmer P, Villiger S (2010) Liquid line of descent of a basanitic liquid at 1.5 Gpa: constraints on the formation of metasomatic veins. Contrib Mineral Petrol 159:621–643. https://doi.org/10.1007/s00410-009-0445-y

    Article  Google Scholar 

  • Pilet S, Baker MB, Müntener O, Stolper EM (2011) Monte Carlo Simulations of metasomatic enrichment in the lithosphere and implications for the source of alkaline basalts. J Petrol 52:1415–1442. https://doi.org/10.1093/petrology/egr007

    Article  Google Scholar 

  • Polat A, Münker C (2004) Hf/Nd isotope evidence for contemporaneous subduction processes in the source of late Archean arc lavas from the Superior Province, Canada. Chem Geol 213:403–429

    Article  Google Scholar 

  • Puchtel IS, Blichert-Toft J, Touboul M, Walker RJ (2018) 182W and HSE constraints from 2.7 Ga komatiites on the heterogeneous nature of the Archean mantle. Geochim Cosmochim Acta 228:1–26

    Article  Google Scholar 

  • Queen M, Hanes JA, Archibald DA, Farrar E, Heaman LM (1996) 40Ar/39Ar phlogopite and U – Pb perovskite dating of lamprophyre dykes from the eastern Lake Superior region: evidence for a 1.14 Ga magmatic precursor to Midcontinent Rift volcanism. Can J Earth Sci 33:958–965. https://doi.org/10.1139/e96-072

    Article  Google Scholar 

  • Rivers T, Culshaw N, Hynes A, Indares A, Jamieson R, Martignole J, Percival JA (2012) The Grenville Orogen–a post-LITHOPROBE perspective. In Cook FA, Clowes RM (eds), Tectonic styles in Canada: The lithoprobe perspective, Geological Association of Canada, Special Paper vol. 49, p. 97–236

  • Rivers T (2008) Assembly and preservation of lower, mid, and upper orogenic crust in the Grenville Province—Implications for the evolution of large hot long-duration orogens. Precambrian Res 167:237–259. https://doi.org/10.1016/j.precamres.2008.08.005

    Article  Google Scholar 

  • Rooney TO (2017) The Cenozoic magmatism of East-Africa: Part I — Flood basalts and pulsed magmatism. Lithos 286:264–301. https://doi.org/10.1016/j.lithos.2017.05.014

    Article  Google Scholar 

  • Rooney TO (2020a) The Cenozoic magmatism of East Africa: Part IV – the terminal stages of rifting preserved in the Northern East African Rift System. Lithos 360–361:105381

    Article  Google Scholar 

  • Rooney TO (2020b) The Cenozoic magmatism of East Africa: Part V - Magma sources and processes in the East African Rift. Lithos 360–361:105296. https://doi.org/10.1016/j.lithos.2019.105296

    Article  Google Scholar 

  • Rooney TO, Hanan BB, Graham DW, Furman T, Blichert-Toft J, Schilling J-G (2012) Upper mantle pollution during afar plume–continental rift interaction. J Petrol 53:365–389. https://doi.org/10.1093/petrology/egr065

    Article  Google Scholar 

  • Rooney TO, Hart WK, Hall CM, Ayalew D, Ghiorso MS, Hidalgo P, Yirgu G (2012) Peralkaline magma evolution and the tephra record in the Ethiopian Rift. Contrib Mineral Petrol 164:407–426

    Article  Google Scholar 

  • Rooney TO, Nelson WR, Dosso L, Furman T, Hanan B (2014) The role of continental lithosphere metasomes in the production of HIMU-like magmatism on the northeast African and Arabian plates. Geology 42:419–422

    Article  Google Scholar 

  • Rooney TO, Morell KD, Hidalgo P, Fraceschi P (2015) Magmatic consequences of the transition from orthogonal to oblique subduction in Panama. Geochem Geophys Geosyst. https://doi.org/10.1002/2015gc006150

    Article  Google Scholar 

  • Rooney TO, Nelson WR, Ayalew D, Hanan B, Yirgu G, Kappelman J (2017) Melting the lithosphere: metasomes as a source for mantle-derived magmas. Earth Planet Sci Lett 461:105–118. https://doi.org/10.1016/j.epsl.2016.12.010

    Article  Google Scholar 

  • Rooney TO, Girard G, Tappe S (2020) The impact on mantle olivine resulting from carbonated silicate melt interaction. Contrib Mineral Petrol 175:56

    Article  Google Scholar 

  • Rosenthal A, Foley SF, Pearson DG, Nowell GM, Tappe S (2009) Petrogenesis of strongly alkaline primitive volcanic rocks at the propagating tip of the western branch of the East African Rift. Earth Planet Sci Lett 284:236–248. https://doi.org/10.1016/j.epsl.2009.04.036

    Article  Google Scholar 

  • Saria E, Calais E, Altamimi Z, Willis P, Farah H (2013) A new velocity field for Africa from combined GPS and DORIS space geodetic Solutions: Contribution to the definition of the African reference frame (AFREF). J Geophys Res Solid Earth 118:1677–1697

    Article  Google Scholar 

  • Shen W, Ritzwoller MH, Schulte-Pelkum V (2013) Crustal and uppermost mantle structure in the central US encompassing the Midcontinent Rift. J Geophys Res Solid Earth 118:4325–4344

    Article  Google Scholar 

  • Shirey SB, Hanson GN (1986) Mantle heterogeneity and crustal recycling in Archean granite-greenstone belts: evidence from Nd isotopes and trace elements in the Rainy Lake area Superior Province, Ontario, Canada. Geochim Cosmochim Acta 50:2631–2651

    Article  Google Scholar 

  • Shirey SB, Klewin KW, Berg JH, Carlson RW (1994) Temporal changes in the sources of flood basalts: Isotopic and trace element evidence from the 1100 Ma old Keweenawan Mamainse Point Formation, Ontario, Canada. Geochim Cosmochim Acta 58:4475–4490

    Article  Google Scholar 

  • Shirey SB (1997) Re-Os isotopic compositions of midcontinent rift system picrites: implications for plume-lithosphere interaction and enriched mantle sources. Can J Earth Sci 34:489–503

    Article  Google Scholar 

  • Smith JM, Ripley EM, Li C, Shirey SB, Benson EK (2022) Magmatic origin for the massive sulfide ores in the sedimentary country rocks of mafic–ultramafic intrusions in the Midcontinent Rift System. MinerDepos. https://doi.org/10.1007/s00126-022-01095-2

    Article  Google Scholar 

  • Sproule RA, Lesher CM, Ayer JA, Thurston PC, Herzberg CT (2002) Spatial and temporal variations in the geochemistry of komatiites and komatiitic basalts in the Abitibi greenstone belt. Precambrian Res 115:153–186

    Article  Google Scholar 

  • Stab M, Bellahsen N, Pik R, Quidelleur X, Ayalew D, Leroy S (2016) Modes of rifting in magma-rich settings: tectono-magmatic evolution of Central Afar. Tectonics 35:2–38. https://doi.org/10.1002/2015tc003893

    Article  Google Scholar 

  • Stamps DS, Saria E, Kreemer C (2018) A geodetic strain rate model for the East African Rift System. Sci Reports 8:1–8

    Google Scholar 

  • Stein CA, Stein S, Merino M, Randy Keller G, Flesch LM, Jurdy DM (2014) Was the midcontinent rift part of a successful seafloor-spreading episode? Geophys Res Lett 41:1465–1470

    Article  Google Scholar 

  • Stein S, Stein CA, Elling R, Kley J, Keller GR, Wysession M, Rooney T, Frederiksen A, Moucha R (2018) Insights from North America’s failed Midcontinent Rift into the evolution of continental rifts and passive continental margins. Tectonophysics 744:403–421

    Article  Google Scholar 

  • Stein CA, Kley J, Stein S, Hindle D, Keller GR (2015) North America’s midcontinent rift: when rift met LIP. Geosphere 11:1607–1616. https://doi.org/10.1130/ges01183.1

    Article  Google Scholar 

  • Stein CA, Stein S, Elling R, Keller GR, Kley J (2018) Is the “Grenville Front” in the central United States really the Midcontinent Rift. GSA Today 28:4–10

    Article  Google Scholar 

  • Steiner RA (2014) Genesis of sulfide mineralization within the granite footwall of the maturi deposit of the South Kawishiwi intrusion, Duluth complex, NE Minnesota

  • Stracke A, Hofmann AW, Hart SR (2005) FOZO, HIMU, and the rest of the mantle zoo. Geochem Geophys Geosyst 6:Q05007. https://doi.org/10.1029/2004GC000824

    Article  Google Scholar 

  • Stracke A, Snow JE, Hellebrand E, Von Der Handt A, Bourdon B, Birbaum K, Günther D (2011) Abyssal peridotite Hf isotopes identify extreme mantle depletion. Earth Planet Sci Lett 308:359–368

    Article  Google Scholar 

  • Sun Ss-, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes in Magmatism in the ocean basins. Geolog Soc Lond Special Publ 42:313–345

    Article  Google Scholar 

  • Sutcliffe RH (1987) Petrology of middle proterozoic diabases and picrites from Lake Nipigon, Canada. Contrib Mineral Petrol 96:201–211. https://doi.org/10.1007/bf00375234

    Article  Google Scholar 

  • Swanson-Hysell NL, Maloof AC, Weiss BP, Evans DAD (2009) No asymmetry in geomagnetic reversals recorded by 1.1-billion-year-old Keweenawan basalts. Nat Geosci 2:713–717

    Article  Google Scholar 

  • Swanson-Hysell NL, Burgess SD, Maloof AC, Bowring SA (2014a) Magmatic activity and plate motion during the latent stage of Midcontinent Rift development. Geology 42:475–478

    Article  Google Scholar 

  • Swanson-Hysell NL, Vaughan AA, Mustain MR, Asp KE (2014b) Confirmation of progressive plate motion during the Midcontinent Rift’s early magmatic stage from the Osler Volcanic Group Ontario, Canada. Geochem Geophys Geosyst 15:2039–2047. https://doi.org/10.1002/2013GC005180

    Article  Google Scholar 

  • Swanson-Hysell NL, Ramezani J, Fairchild LM, Rose IR (2019) Failed rifting and fast drifting: Midcontinent rift development, Laurentia’s rapid motion and the driver of Grenvillian orogenesis. GSA Bulletin 131:913–940

    Article  Google Scholar 

  • Swanson-Hysell NL, Rivers T, Van der Lee S (2022) The late mesoproterozoic to early neoproterozoic grenvillian orogeny and the assembly of Rodinia: turning point in the tectonic evolution of Laurentia. In: Whitmeyer SJ, Kellet D, Tikoff B, and Williams (eds) Laurentia: evolution of a continent, Geological Society of America, GSA Memoir, Boulder, CO, USA

  • Tappe S, Foley SF, Kjarsgaard BA, Romer RL, Heaman LM, Stracke A, Jenner GA (2008) Between carbonatite and lamproite—Diamondiferous Torngat ultramafic lamprophyres formed by carbonate-fluxed melting of cratonic MARID-type metasomes. Geochim Cosmochim Acta 72:3258–3286

    Article  Google Scholar 

  • Tappe S, Brand NB, Stracke A, van Acken D, Liu C-Z, Strauss H, Wu F-Y, Luguet A, Mitchell RH (2017) Plates or plumes in the origin of kimberlites: U/Pb perovskite and Sr-Nd-Hf-Os-CO isotope constraints from the Superior craton (Canada). Chem Geol 455:57–83

    Article  Google Scholar 

  • Taranovic V, Ripley EM, Li C, Shirey SB (2018) S, O, and Re-Os isotope studies of the Tamarack Igneous Complex: melt-rock interaction during the early stage of Midcontinent rift development. Econ Geol 113:1161–1179

    Article  Google Scholar 

  • Thorpe RI (1999) The Pb isotope linear array for volcanogenic massive sulphide deposits of the Abitibi and Wawa subprovinces Canada Shield, in the Giant Kid Creek Volcanogenic Massive Sulphide Deposit, Western Abitibi Subprovince, Canada. Econ Geol Monograph Series 10:555–576

    Google Scholar 

  • Varet J, Gasse F (1975) Carte géologique de l’Afar central et méridional. Ethiopie et TFAI [Territoire français des Afars et des Issas]-Geological map of central and southern Afar: Ethiopia and FTAI [French territory of Afars and Issas]: CNRS

  • Van Schmus WR, Hinze WJ (1985) The midcontinent rift system. Ann Rev Earth Planet Sci 13:345–383. https://doi.org/10.1146/annurev.ea.13.050185.002021

    Article  Google Scholar 

  • Vervoort JD, Blichert-Toft J (1999) Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim Cosmochim Acta 63:533–556

    Article  Google Scholar 

  • Vervoort JD, Green JC (1997) Origin of evolved magmas in the Midcontinent rift system, northeast Minnesota: Nd-isotope evidence for melting of Archean crust. Can J Earth Sci 34:521–535. https://doi.org/10.1139/e17-042

    Article  Google Scholar 

  • Vervoort JD, Wirth K, Kennedy B, Sandland T, Harpp KS (2007) The magmatic evolution of the Midcontinent rift: new geochronologic and geochemical evidence from felsic magmatism. Precambrian Res 157:235–268

    Article  Google Scholar 

  • White RS, McKenzie D (1995) Mantle plumes and flood basalts. J Geophys Res Solid Earth 100:17543–17585. https://doi.org/10.1029/95jb01585

    Article  Google Scholar 

  • White RS (1997) Mantle temperature and lithospheric thinning beneath the Midcontinent rift system: evidence from magmatism and subsidence. Can J Earth Sci 34:464–475

    Article  Google Scholar 

  • Wirth KR, Naiman ZJ, Vervoort JD (1997) The Chengwatana Volcanics, Wisconsin and Minnesota: petrogenesis of the southernmost volcanic rocks exposed in the Midcontinent rift. Can J Earth Sci 34:536–548. https://doi.org/10.1139/e17-043

    Article  Google Scholar 

  • Wittig N, Baker JA, Downes H (2007) U-Th–Pb and Lu–Hf isotopic constraints on the evolution of sub-continental lithospheric mantle French Massif Central. Geochim Cosmochim Acta 71:1290–1311

    Article  Google Scholar 

  • Wolfenden E, Ebinger C, Yirgu G, Renne PR, Kelley SP (2005) Evolution of a volcanic rifted margin: Southern Red Sea, Ethiopia. Geol Soc Am Bull 117:846–864

    Article  Google Scholar 

  • Wooden JL, Czamanske GK, Fedorenko VA, Arndt NT, Chauvel C, Bouse RM, King B-SW, Knight RJ, Siems DF (1993) Isotopic and trace-element constraints on mantle and crustal contributions to Siberian continental flood basalts Noril’sk Area, Siberia. Geochim Cosmochim Acta 57:3677–3704

    Article  Google Scholar 

  • Woodruff LG, Schulz KJ, Nicholson SW, Dicken CL (2020) Mineral deposits of the Mesoproterozoic Midcontinent Rift System in the Lake Superior region-A space and time classification. Ore Geol Rev 126:103716

    Article  Google Scholar 

  • Zartman RE, Nicholson SW, Cannon WF, Morey GB (1997) U-Th-Ph zircon ages of some Keweenawan supergroup rocks from the south shore of Lake Superior. Can J Earth Sci 34:549–561

    Article  Google Scholar 

  • Zhang H, van der Lee S, Wolin E, Bollmann TA, Revenaugh J, Wiens DA, Frederiksen AW, Darbyshire FA, Aleqabi GI, Wysession ME (2016) Distinct crustal structure of the North American Midcontinent Rift from P wave receiver functions. J Geophys Res Solid Earth 121:8136–8153

    Article  Google Scholar 

Download references

Acknowledgements

We thank Jan Kramers for providing a table of model results from his 1997 paper. We thank Anthony Pace (Ontario Geological Survey) for his insights into Mamainse Point over the last decade. We thank Reid Keays for providing the geochemical data from Mamainse Point. We are grateful to Jim Walker and Jonathan Berg for access to the Mamainse Point sample suite. We also thank James Ralph for access to the Seabrook Lake sample. We thank Anthony Pace, District Geologist, Sault Ste. Marie District, Ontario Geological Survey, Ministry of Northern Development and Mines, Resident Geologist Program for his assistance with the Seabrook Lake complex. Jacob Bonessi and Taylor Kelly are thanks for assistance in the field during sample collection at the Coldwell Complex. Alex Steiner is thanked for discussions that helped clarify some of the ideas in this manuscript. We thank Sara Callegaro and Nicholas Swanson-Hysell for their constructive peer reviews that improved this manuscript. This work was supported by a grant from the United States National Science Foundation EAR-1549764 to Rooney, EAR-1549676 to Moucha, and EAR-1549920 to Stein. The data presented in this manuscript has been uploaded to the Earthchem database https://doi.org/10.26022/IEDA/111713.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tyrone O. Rooney.

Additional information

Communicated by Gordon Moore.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rooney, T.O., Konter, J.G., Finlayson, V.A. et al. Constraining the isotopic endmembers contributing to 1.1 Ga Keweenawan large igneous province magmatism. Contrib Mineral Petrol 177, 49 (2022). https://doi.org/10.1007/s00410-022-01907-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-022-01907-8

Keywords

Navigation