Skip to main content
Log in

Inherited igneous zircons in jadeitite predate high-pressure metamorphism and jadeitite formation in the Jagua Clara serpentinite mélange of the Rio San Juan Complex (Dominican Republic)

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

This study utilizes zircon SIMS U–Pb dating, REE and trace-element analysis as well as oxygen isotope ratios of zircon to distinguish jadeite-rich rocks that formed by direct crystallization from a hydrous fluid from those that represent products of a metasomatic replacement process. Zircon was separated from a concordant jadeitite layer and its blueschist host, as well as from loose blocks of albite-jadeite rock and jadeitite that were all collected from the Jagua Clara serpentinite-matrix mélange in the northern Dominican Republic. In the concordant jadeitite layer, three groups of zircon domains were distinguished based on both age as well as geochemical and oxygen isotope values: age groups old (117.1 ± 0.9 Ma), intermediate (three dates: 90.6, 97.3, 106.0 Ma) and young (77.6 ± 1.3 Ma). Zircon populations from the blueschist host as well as the other three jadeite-rich samples generally match zircon domains of the old age group in age as well as geochemistry and oxygen isotope ratios. Moreover, these older zircon populations are indistinguishable from zircon typical of igneous oceanic crust and hence are probably inherited from igneous protoliths of the jadeite-rich rocks. Therefore, the results suggest that all investigated jadeite-rich rocks were formed by a metasomatic replacement process. The younger domains might signal actual ages of jadeitite formation, but there is no unequivocal proof for coeval zircon-jadeite growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Amante C, Eakins BW (2009) ETOPO1—1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24

  • Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53(1):197–214. doi:10.1016/0016-7037(89)90286-X

    Article  Google Scholar 

  • Andres U (2010) Development and prospects of mineral liberation by electrical pulses. Int J Miner Process 97(1–4):31–38. doi:10.1016/j.minpro.2010.07.004

    Article  Google Scholar 

  • Barth AP, Wooden JL (2006) Timing of magmatism following initial convergence at a passive margin, southwestern US Cordillera, and ages of lower crustal magma sources. J Geol 114:231–245

    Article  Google Scholar 

  • Barth AP, Wooden JL (2010) Coupled elemental and isotopic analyses of polygenetic zircons from granitic rocks by ion microprobe, with implications for melt evolution and the sources of granitic magmas. Chem Geol 277:149–159

    Article  Google Scholar 

  • Black LP, Kamo SL, Allen CM, Davis DW, Aleinikoff JN, Valley JW et al (2004) Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chem Geol 205:115–140

  • Blanco-Quintero IF, Rojas-Agramonte Y, García-Casco A, Kröner A, Mertz DF, Lázaro C et al (2011a) Timing of subduction and exhumation in a subduction channel: evidence from slab melts from La Corea Mélange (eastern Cuba). Lithos 127(1–2):86–100. doi:10.1016/j.lithos.2011.08.009

    Article  Google Scholar 

  • Blanco-Quintero IF, Gerya TV, García-Casco A, Castro A (2011b) Subduction of young oceanic plates: a numerical study with application to aborted thermal-chemical plumes. Geochem Geophys Geosyst. doi:10.1029/2011GC003717

    Google Scholar 

  • Boschman LM, van Hinsbergen DJJ, Torsvik TH, Spakman W, Pindell JL (2014) Kinematic reconstruction of the Caribbean region since the Early Jurassic. Earth Sci Rev 138:102–136. doi:10.1016/j.earscirev.2014.08.007

    Article  Google Scholar 

  • Bowman JR, Moser DE, Valley JW, Wooden JL, Kita NT, Mazdab FK (2012) Zircon U-Pb isotope, δ18O and trace element response to 80 my of high temperature metamorphism in the lower crust: sluggish diffusion and new records of Archean craton formation. Am J Sci 311(9):719–772. doi:10.2475/09.2011.01

    Article  Google Scholar 

  • Bröcker M, Keasling A (2006) Ionprobe U-Pb zircon ages from the high-pressure/low-temperature mélange of Syros, Greece: age diversity and the importance of pre-Eocene subduction. J Metamorph Geol 24(7):615–631

    Article  Google Scholar 

  • Cárdenas-Párraga J, García-Casco A, Núñez Cambra K, Rodriguez-Vega A, Blanco Quintero I, Harlow GE, Lázaro C (2010) Jadeitite jade occurrence from the Sierra del Convento mélange (eastern Cuba). Bol Soc Geo Mex 62(1):199–205

    Google Scholar 

  • Cárdenas-Párraga J, García-Casco A, Harlow GE, Blanco-Quintero IF, Rojas-Agramonte Y, Kröner A (2012) Hydrothermal origin and age of jadeitites from Sierra del Convento Mélange. Eur J Mineral 24(2):313–331. doi:10.1127/0935-1221/2012/0024-2171

    Article  Google Scholar 

  • Cavosie AJ, Kita NT, Valley JW (2009) Primitive oxygen-isotope ratio recorded in magmatic zircon from the Mid-Atlantic Ridge. Am Mineral 94(7):926–934. doi:10.2138/am.2009.2982

    Article  Google Scholar 

  • Coleman RG (1977) Ophiolites-Ancient oceanic lithosphere?. Springer, Berlin

    Google Scholar 

  • Compagnoni R, Rolfo F, Manavella F, Salusso F (2007) Jadeitite in the Monviso meta-ophiolite, Piemonte Zone. Ital West Alps. Period Mineral 76(2–3):79–89

    Google Scholar 

  • Compagnoni R, Rolfo F, Castelli D (2012) Jadeitite from the Monviso meta-ophiolite, western Alps: occurrence and genesis. Eur J Mineral 24(2):333–342. doi:10.1127/0935-1221/2011/0023-2164

    Article  Google Scholar 

  • Draper G, Nagle F (1991) Geology, structure and tectonic development of the Rio San Juan Complex, northern Dominican Republic. In: Mann P, Draper G, Lewis JF (eds) Special Paper 262: Geologic and Tectonic Development of the North America-Caribbean Plate Boundary in Hispaniola. Geol Soc Am, Boulder (Colorado), pp 77–95

    Chapter  Google Scholar 

  • Escuder-Viruete J (2010) Mapa Geológico de la República Dominica: Hojas de Río San Juan, Guayabito, Salcedo, Gaspar Hernández, Pimentel, Cabrera y Villa Riva. Instituto Geológico y Minero de España, Santo Domingo (R.D.)

  • Escuder-Viruete J, Pérez-Estaún A (2013) Contrasting exhumation P-T paths followed by high-P rocks in the northern Caribbean subduction-accretionary complex: insights from the structural geology, microtextures and equilibrium assemblage diagrams. Lithos 160–161:117–144. doi:10.1016/j.lithos.2012.11.028

    Article  Google Scholar 

  • Escuder-Viruete J, Friedman R, Castillo-Carrión M, Jabites J, Pérez-Estaún A (2011) Origin and significance of the ophiolitic high-P mélanges in the northern Caribbean convergent margin: insights from the geochemistry and large-scale structure of the Río San Juan metamorphic complex. Lithos 127(3–4):483–504. doi:10.1016/j.lithos.2011.09.015

    Article  Google Scholar 

  • Escuder-Viruete J, Valverde-Vaquero P, Rojas-Agramonte Y, Gabites J, Castillo-Carrión M, Pérez-Estaún A (2013a) Timing of deformational events in the Río San Juan complex: implications for the tectonic controls on the exhumation of high-P rocks in the northern Caribbean subduction–accretionary prism. Lithos 177:416–435. doi:10.1016/j.lithos.2013.07.006

    Article  Google Scholar 

  • Escuder-Viruete J, Valverde-Vaquero P, Rojas-Agramonte Y, Jabites J, Pérez-Estaún A (2013b) From intra-oceanic subduction to arc accretion and arc-continent collision: insights from the structural evolution of the Río San Juan metamorphic complex, northern Hispaniola. J Struct Geol 46:34–56. doi:10.1016/j.jsg.2012.10.008

    Article  Google Scholar 

  • Ferry JM, Watson EB (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol 154(4):429–437. doi:10.1007/s00410-007-0201-0

    Article  Google Scholar 

  • Flores KE, Martens UC, Harlow GE, Brueckner HK, Pearson NJ (2013) Jadeitite formed during subduction: in situ zircon geochronology constraints from two different tectonic events within the Guatemala Suture Zone. Earth Planet Sci Lett 371–372:67–81. doi:10.1016/j.epsl.2013.04.015

    Article  Google Scholar 

  • Floyd PA, Yaliniz MK, Goncuoglu MC (1998) Geochemistry and petrogenesis of intrusive and extrusive ophiolitic plagiogranites, Central Anatolian Crystalline Complex, Turkey. Lithos 42:225–241

    Article  Google Scholar 

  • Fu B, Mernagh TP, Kita NT, Kemp AI, Valley JW (2009) Distinguishing magmatic zircon from hydrothermal zircon: a case study from the Gidginbung high-sulphidation Au–Ag–(Cu) deposit SE Australia. Chem Geol 259(3–4):131–142. doi:10.1016/j.chemgeo.2008.10.035

    Article  Google Scholar 

  • Fu B, Valley JW, Kita NT, Spicuzza MJ, Paton C, Tsujimori T, Bröcker M, Harlow GE (2010) Multiple origins of zircons in jadeitite. Contrib Mineral Petrol 159(6):769–780

    Article  Google Scholar 

  • Fu B, Paul B, Cliff J, Bröcker M, Bulle F (2012) O-Hf isotope constraints on the origin of zircon in high-pressure mélange blocks and associated matrix rocks from Tinos and Syros Greece. Eur J Mineral 24(2):277–287. doi:10.1127/0935-1221/2011/0023-2131

    Article  Google Scholar 

  • Fu B, Kita NT, Wilde SA, Liu X, Cliff J, Greig A (2013) Origin of the Tongbai-Dabie-Sulu Neoproterozoic low-δ18O igneous province, east-central China. Contrib Mineral Petrol 165(4):641–662. doi:10.1007/s00410-012-0828-3

    Article  Google Scholar 

  • García-Casco A, Lázaro C, Rojas-Agramonte Y, Kröner A, Torres-Roldán RL, Núñez Cambra K et al (2008) Partial melting and counterclockwise P-T path of subducted oceanic crust (Sierra del Convento Melange, Cuba). J Petrol 49(1):129–161

    Article  Google Scholar 

  • García-Casco A, Rodriguez-Vega A, Cárdenas-Párraga J, Iturralde-Vinent MA, Lázaro C, Blanco Quintero I, Rojas-Agramonte Y, Kröner A, Núñez Cambra K, Millan G, Torres-Roldán RL, Carrasquilla S (2009) A new jadeitite jade locality (Sierra del Convento, Cuba): first report and some petrological and archeological implications. Contrib Mineral Petrol 158(1):1–16

    Article  Google Scholar 

  • Gebauer D, Schertl H, Brix M, Schreyer W (1997) 35 Ma old ultrahigh-pressure metamorphism and evidence for very rapid exhumation in the Dora Maira Massif, Western Alps. Lithos 41:5–24

    Article  Google Scholar 

  • Geisler T, Schaltegger U, Tomaschek F (2007) Re-equilibration of Zircon in aqueous fluids and melts. Elements 3(1):43–50. doi:10.2113/gselements.3.1.43

    Article  Google Scholar 

  • Goodenough KM, Thomas RJ, Styles MT, Schofield DI, MacLeod CJ (2014) Records of Ocean growth and destruction in the Oman-UAE Ophiolite. Elements 10(2):109–114. doi:10.2113/gselements.10.2.109

    Article  Google Scholar 

  • Grimes CB, John BE, Kelemen PB, Mazdab FK, Wooden JL, Cheadle MJ, Hanghøj K, Schwartz JJ (2007) Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. Geol 35(7):643–646. doi:10.1130/G23603A.1

    Article  Google Scholar 

  • Grimes CB, John BE, Cheadle MJ, Mazdab FK, Wooden JL, Swapp S, Schwartz JJ (2009) On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere. Contrib Mineral Petrol 158(6):757–783. doi:10.1007/s00410-009-0409-2

    Article  Google Scholar 

  • Grimes CB, Ushikubo T, John BE, Valley JW (2011) Uniformly mantle-like δ18O in zircons from oceanic plagiogranites and gabbros. Contrib Mineral Petrol 161(1):13–33

    Article  Google Scholar 

  • Grimes CB, Ushikubo T, Kozdon R, Valley JW (2013) Perspectives on the origin of plagiogranite in ophiolites from oxygen isotopes in zircon. Lithos 179:48–66. doi:10.1016/j.lithos.2013.07.026

    Article  Google Scholar 

  • Grimes CB, Wooden JL, Cheadle MJ, John BE (2015) “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contrib Mineral Petrol 170:46. doi:10.1007/s00410-015-1199-3

    Article  Google Scholar 

  • Harley SL, Kelly NM, Möller A (2007) Zircon behaviour and the thermal histories of mountain chains. Elements 3(1):25–30. doi:10.2113/gselements.3.1.25

    Article  Google Scholar 

  • Harlow GE (1994) Jadeitites, albitites and related rocks from the Motagua Fault Zone Guatemala. J Metamorph Geol 12(1):49–68

    Article  Google Scholar 

  • Harlow GE, Sorensen SS (2005) Jade (Nephrite and Jadeitite) and Serpentinite: metasomatic connections. Int Geol Rev 47(2):113–146

    Article  Google Scholar 

  • Harlow GE, Sorensen SS, Sisson VB (2007) Jade Deposits. In: Groat LA (ed) Geology of Gem Deposits, 1st edn., Quebec, pp 207–254

  • Harlow GE, Sisson VB, Sorensen SS (2011) Jadeitite from Guatemala: new observations and distinctions among multiple occurrences. Geol Acta 9(3–4):363–387

    Google Scholar 

  • Harlow GE, Tsujimori T, Sorensen SS (2015) Jadeitites and plate tectonics. Annu Rev Earth Pl Sci 43:105–138. doi:10.1146/annurev-earth-060614-105215

    Article  Google Scholar 

  • Hertwig A (2014) Genesis of jadeitites and their country rocks, Rio San Juan Complex, Dominican Republic. PhD Dissertation, 1-382, Ruhr-Universität Bochum

  • Hoskin PW (2005) Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills Australia. Geochim Cosmochim Acta 69(3):637–648. doi:10.1016/j.gca.2004.07.006

    Article  Google Scholar 

  • Hoskin PW, Black LP (2000) Metamorphic zircon formation by solidstate recrystallization of protolith igneous zircon. J Metamorph Geol 18:423–439

    Article  Google Scholar 

  • Hoskin WO, Schaltegger U (2003) The composition of zircon and Igneous and Metamorphic Petrogenesis. In: Hanchar JM, Hoskin WO (eds) Zircon. Mineralogical Society of America; Geochemical Society, Washington (D.C.), vol. 53, pp 27–55

  • Kita NT, Ushikubo T, Fu B, Valley JW (2009) High precision SIMS oxygen isotope analysis and the effect of sample topography. Chem Geol 264:43–57

    Article  Google Scholar 

  • Koepke J, Feig ST, Snow J, Freise M (2004) Petrogenesis of oceanic plagiogranites by partial melting of gabbros: an experimental study. Contrib Mineral Petrol 146(4):414–432. doi:10.1007/s00410-003-0511-9

    Article  Google Scholar 

  • Koepke J, Berndt J, Feig ST, Holtz F (2007) The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros. Contrib Mineral Petrol 153(1):67–84. doi:10.1007/s00410-006-0135-y

    Article  Google Scholar 

  • Korotev RL (1996) A self-consistent compilation of elemental concentration data for 93 geochemical reference samples. Geostand Geoanal Res 20(2):217–245. doi:10.1111/j.1751-908X.1996.tb00185.x

    Article  Google Scholar 

  • Krebs M (2008) Druck-Temperatur-Zeit-Pfade subduktionszonenbezogener Hochdruckmetamorphite des Rio San Juan-Komplexes, Dominikanische Republik. PhD Dissertation, Bd. I, 1-443, Bd. II, 1-419, Ruhr-Universität Bochum

  • Krebs M, Maresch WV, Schertl H, Münker C, Baumann A, Draper G, Idleman B, Trapp E (2008) The dynamics of intra-oceanic subduction zones: a direct comparison between fossil petrological evidence (Rio San Juan Complex, Dominican Republic) and numerical simulation. Lithos 103(1–2):106–137. doi:10.1016/j.lithos.2007.09.003

    Article  Google Scholar 

  • Krebs M, Schertl H, Maresch WV, Draper G (2011) Mass flow in serpentinite-hosted subduction channels: P–T–t path patterns of metamorphic blocks in the Rio San Juan mélange (Dominican Republic). J Asian Earth Sci 42(4):569–595. doi:10.1016/j.jseaes.2011.01.011

    Article  Google Scholar 

  • Lázaro C, García-Casco A, Agramonte YR, Kröner A, Neubauer F, Iturralde-Vinent MA (2009) Fifty-five-million-year history of oceanic subduction and exhumation at the northern edge of the Caribbean plate (Sierra del Convento mélange, Cuba). J Metamorph Geol 27(1):19–40

    Article  Google Scholar 

  • Liati A, Gebauer D, Fanning C (2004) The age of ophiolitic rocks of the Hellenides (Vourinos, Pindos, Crete): first U-Pb ion microprobe (SHRIMP) zircon ages. Chem Geol 207(3–4):171–188. doi:10.1016/j.chemgeo.2004.02.010

    Article  Google Scholar 

  • Ludwig KR (2001) Squid version 1.02: a users manual, vol 2. Berkeley Geochronological Center Special Publications, Berkeley, pp 1–22

    Google Scholar 

  • Ludwig KR (2003) Mathematical-Statistical Treatment of Data and Errors for 230Th/U Geochronology. Rev Mineral Geochem 52:631–656

    Article  Google Scholar 

  • Ludwig KR (2012) User’s manual for isoplot 3.75: a geochronological toolkit for microsoft excel, vol 5. Berkeley Geochronological Center Special Publications, Berkeley, pp 1–75

    Google Scholar 

  • Mann P, Draper G, Lewis JF (1991) An overview of the geologic and tectonic development of Hispaniola. In: Mann P, Draper G, Lewis JF (eds) Special paper 262: geologic and tectonic development of the North America-Caribbean plate boundary in Hispaniola. Geological Society of America, Boulder (Colorado), pp 1–28

    Chapter  Google Scholar 

  • Maresch WV, Grevel C, Stanek KP, Schertl H, Carpenter MA (2012) Multiple growth mechanisms of jadeite in Cuban metabasite. Eur J Mineral. doi:10.1127/0935-1221/2012/0024-2179

    Google Scholar 

  • Mattinson JM (2010) Analysis of the relative decay constants of 235U and 238U by multi-step CA-TIMS measurements of closed-system natural zircon samples. Chem Geol 275(3–4):186–198

    Article  Google Scholar 

  • Mattinson CG, Wooden JL, Zhang JX, Bird DK (2009) Paragneiss zircon geochronology and trace element geochemistry, North Qaidam HP/UHP terrane, western China. J Asian Earth Sci 35(3–4):298–309. doi:10.1016/j.jseaes.2008.12.007

    Article  Google Scholar 

  • Mazdab FK (2009) Characterization of flux-grown Trace-element-doped titanite using the high-mass-resolution ion microprobe (SHRIMP-RG). Can Mineral 47(4):813–831. doi:10.3749/canmin.47.4.813

    Article  Google Scholar 

  • Mazdab FK, Wooden J (2006) Trace element analysis in zircon by ion microprobe (SHRIMP-RG): technique and applications. Geochim Cosmochim Acta 70(18):A405. doi:10.1016/j.gca.2006.06.817

    Article  Google Scholar 

  • McClelland WC, Gilotti JA, Mazdab FK, Wooden JL (2009) Trace-element record in zircons during exhumation from UHP conditions North-East Greenland Caledonides. Eur J Mineral 21(6):1135–1148. doi:10.1127/0935-1221/2009/0021-2000

    Article  Google Scholar 

  • Meng F, Makeyev AB, Yang J (2011) Zircon U-Pb dating of jadeitite from the Syum-Keu ultramafic complex, Polar Urals, Russia: constraints for subduction initiation. J Asian Earth Sci 42(4):596–606. doi:10.1016/j.jseaes.2011.01.013

    Article  Google Scholar 

  • Meng F, Yang H-J, Makeyev AB, Ren Y, Kulikova KV, Bryanchaninova NI (2016) Jadeitite in the Syum-Keu ultramafic complex from Polar Urals, Russia: insights into fluid activity in subduction zones. Eur J Mineral (in press)

  • Mori Y, Orihashi Y, Miyamoto T, Shimada K, Shigeno M, Nishiyama T (2011) Origin of zircon in jadeitite from the Nishisonogi metamorphic rocks, Kyushu Japan. J Metamorph Geol 29(6):673–684. doi:10.1111/j.1525-1314.2011.00935.x

    Article  Google Scholar 

  • Page FZ, Fu B, Kita NT, Fournelle J, Spicuzza MJ, Schulze DJ, Viljoen F, Basei MA, Valley JW (2007a) Zircons from kimberlite: new insights from oxygen isotopes, trace elements, and Ti in zircon thermometry. Geochim Cosmochim Acta 71(15):3887–3903. doi:10.1016/j.gca.2007.04.031

    Article  Google Scholar 

  • Page FZ, Ushikubo T, Kita NT, Riciputi LR, Valley JW (2007b) High-precision oxygen isotope analysis of picogram samples reveals 2 micron gradients and slow diffusion in zircon. Am Mineral 92(10):1772–1775. doi:10.2138/am.2007.2697

    Article  Google Scholar 

  • Pindell J, Kennan L (2009) Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update. In: James KH, Lorente MA, Pindell J (eds) Special Publications 328: The Origin and Evolution of the Caribbean Plate. Geological Society, London, pp 1–55

    Google Scholar 

  • Pindell J, Kennan L, Stanek KP, Maresch WV, Draper G (2006) Foundations of Gulf of Mexico and Caribbean evolution: eight controversies resolved. Geol Acta 4(1–2):303–341

    Google Scholar 

  • Pindell J, Maresch WV, Martens UC, Stanek KP (2012) The Greater Antillean Arc: early Cretaceous origin and proposed relationship to Central American subduction mélanges: implications for models of Caribbean evolution. Int Geol Rev 54(2):131–143. doi:10.1080/00206814.2010.510008

    Article  Google Scholar 

  • Qiu Z, Wu F, Yang S, Zhu M, Sun J, Yang P (2009) Age and genesis of the Myanmar jadeite: constraints from U–Pb ages and Hf isotopes of zircon inclusions. Chin Sci Bull 54(4):658–668. doi:10.1007/s11434-008-0490-3

    Article  Google Scholar 

  • Rosencrantz E, Ross MI, Sclater JG (1988) Age and spreading history of the Cayman Trough as determined from depth, heat flow, and magnetic anomalies. J Geophys Res 93(B3):2141–2157. doi:10.1029/JB093iB03p02141

    Article  Google Scholar 

  • Rubatto D (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chem Geol 184(1–2):123–138. doi:10.1016/S0009-2541(01)00355-2

    Article  Google Scholar 

  • Rubatto D, Angiboust S (2015) Oxygen isotope record of oceanic and high-pressure metasomatism. A P–T–time–fluid path for the Monviso eclogites (Italy). Contrib Mineral Petrol. doi:10.1007/s00410-015-1198-4

    Google Scholar 

  • Rubatto D, Hermann J (2003) Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): implications for Zr and Hf budget in subduction zones. Geochim Cosmochim Acta 67(12):2173–2187. doi:10.1016/S0016-7037(02)01321-2

    Article  Google Scholar 

  • Rubatto D, Hermann J (2007) Zircon behaviour in deeply subducted rocks. Elements 3(1):31–35. doi:10.2113/gselements.3.1.31

    Article  Google Scholar 

  • Schaltegger U (1999) Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in situ U-Pb isotope, cathodoluminescence and microchemical evidence. Contrib Mineral Petrol 134(2–3):186–201

    Article  Google Scholar 

  • Schertl H, Maresch WV, Stanek KP, Hertwig A, Krebs M, Baese R, Sergeev SS (2012) New occurrences of jadeitite, jadeite quartzite and jadeite-lawsonite quartzite in the Dominican Republic, Hispaniola: petrological and geochronological overview. Eur J Mineral 24(2):199–216. doi:10.1127/0935-1221/2012/0024-2201

    Article  Google Scholar 

  • Shi G, Cui W, Cao S, Jiang N, Jian P, Liu D, Miao L, Chu B (2008) Ion microprobe zircon U–Pb age and geochemistry of the Myanmar jadeitite. J Geol Soc London 165:221–234

    Article  Google Scholar 

  • Stacey JA, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  • Tsujimori T, Harlow GE (2012) Petrogenetic relationships between jadeitite and associated high-pressure and low-temperature metamorphic rocks in worldwide jadeitite localities: a review. Eur J Mineral 24(2):371–390. doi:10.1127/0935-1221/2012/0024-2193

    Article  Google Scholar 

  • Tsujimori T, Wooden J, Miyamoto T (2005) U-Pb dating of large zircons in low-temperature jadeitite from the Osayama serpentinite melange, Southwest Japan: insights into the timing of serpentinization. Int Geol Rev 47(10):1048–1057

    Article  Google Scholar 

  • Valley JW (2003) Oxygen isotopes in Zircon. In: Hanchar JM, Hoskin WO (eds) Zircon mineralogical society of America, vol 53. Geochemical Society, Washington (D.C.), pp 343–385

    Google Scholar 

  • Valley JW, Kita NT (2009) In situ oxygen isotope geochemistry by ion microprobe. In: Fayek M (ed) Secondary Ion Mass Spectrometry in the Earth Sciences, vol 41. Mineralogical Society of Canada, Toronto, pp 19–63

    Google Scholar 

  • Valley JW, Kinny PD, Schulze DJ, Spicuzza MJ (1998) Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts. Contrib Mineral Petrol 133:1–11

    Article  Google Scholar 

  • Valley JW, Bindeman IN, Peck WH (2003) Empirical calibration of oxygen isotope fractionation in zircon. Geochim Cosmochim Acta 67(17):3257–3266. doi:10.1016/S0016-7037(03)00090-5

    Article  Google Scholar 

  • Valley JW, Lackey JS, Cavosie AJ, Clechenko CC, Spicuzza MJ, Basei MAS, Bindeman IN, Ferreira VP, Sial AN, King EM, Peck WH, Sinha AK, Wei CS (2005) 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib Mineral Petrol 150(6):561–580. doi:10.1007/s00410-005-0025-8

    Article  Google Scholar 

  • van der Wielen KP, Pascoe R, Weh A, Wall F, Rollinson G (2013) The influence of equipment settings and rock properties on high voltage breakage. Miner Eng 46–47:100–111. doi:10.1016/j.mineng.2013.02.008

    Article  Google Scholar 

  • Williams IS (1998) U-Pb by ion microprobe. In: McKibben MA, Shanks WC, Ridley WI (eds) Applications of microanalytical techniques to understanding mineralizing processes, vol 7. Society of Economic Geologists, Littleton, pp 1–35

    Google Scholar 

  • Yui T, Maki K, Usuki T, Lan C, Martens UC, Wu C, Wu T, Liou JG (2010) Genesis of Guatemala jadeitite and related fluid characteristics: insight from zircon. Chem Geol 270(1–4):45–55

    Article  Google Scholar 

  • Yui T, Kenshi M, Wang K, Lan C, Usuki T, Lizuka Y, Wu C, Wu T, Nishiyama T, Martens UC, Liou JG, Grove M (2012) Hf isotope and REE compositions of zircon from jadeitite (Tone, Japan and north of the Motagua fault, Guatemala): implications on jadeitite genesis and possible protoliths. Eur J Mineral 24(2):263–275. doi:10.1127/0935-1221/2011/0023-2127

    Article  Google Scholar 

  • Yui T, Fukuyama M, Lizuka Y, Wu C, Wu T, Liou JG, Grove M (2013) Is Myanmar jadeitite of Jurassic age? A fiction from incompletely recrystallized inherited zircon. Lithos 160–161:268–282

    Article  Google Scholar 

  • Zhang Z, Schertl H, Wang JL, Shen K, Liou JG (2009) Source of coesite inclusions within inherited magmatic zircon from Sulu UHP rocks, eastern China, and their bearing for fluid-rock interaction and SHRIMP dating. J Metamorph Geol 27(4):317–333. doi:10.1111/j.1525-1314.2009.00819.x

    Article  Google Scholar 

Download references

Acknowledgments

The work presented here is part of the PhD thesis of A. Hertwig that was financially supported by Deutsche Forschungsgemeinschaft (SCHE 517/10-1). We are grateful to Peter Segler at the Selfrag Lab and Mineral Processing Laboratories of the TU Bergakademie Freiberg for assistance during zircon separation. We would also like to thank Joe Wooden and other staff of the US Geological Survey–Stanford University Ion Probe Laboratory for assistance during SHRIMP analyses. Comments of Craig Grimes and an anonymous reviewer helped to substantially improve the manuscript. WiscSIMS is partly supported by the US National Science Foundation (EAR 1355590).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Hertwig.

Additional information

Communicated by Jochen Hoefs.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hertwig, A., McClelland, W.C., Kitajima, K. et al. Inherited igneous zircons in jadeitite predate high-pressure metamorphism and jadeitite formation in the Jagua Clara serpentinite mélange of the Rio San Juan Complex (Dominican Republic). Contrib Mineral Petrol 171, 48 (2016). https://doi.org/10.1007/s00410-016-1256-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-016-1256-6

Keywords

Navigation