Skip to main content

Advertisement

Log in

Water concentrations and hydrogen isotope compositions of alkaline basalt-hosted clinopyroxene megacrysts and amphibole clinopyroxenites: the role of structural hydroxyl groups and molecular water

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The aim of this study was to determine both ‘water’ contents (as OH and H2O) and δD values of several clinopyroxene samples from alkaline basalts. These parameters were first obtained from five clinopyroxene samples using both the classical ‘off-line’ vacuum extraction technique and the ‘on-line’ high-temperature pyrolysis technique. Blanks measured with the ‘on-line’ gas extraction techniques were low enough to prevent any contamination by atmospheric water vapour. The comparison of data has revealed that our ‘on-line’ procedure is more effective for the extraction of ‘water’ from clinopyroxenes and, consequently, this ‘on-line’ technique was applied to ten additional clinopyroxene samples. Sample δD values cover a similar range from −95 to −45 ‰ (VSMOW) regardless of the studied locations, whereas the total ‘water’ content varies from ~115 to ~2570 ppm. The structural hydroxyl content of clinopyroxene samples measured by micro-FTIR spectrometry varies from ~0 to 476 ppm expressed in molecular water equivalent. The total ‘water’ concentrations determined by mass spectrometry differ considerably from structural hydroxyl contents constrained by micro-FTIR, thus indicating that considerable proportion of the ‘water’ may be present in (nano)-inclusions. The structural hydroxyl concentration—apart from clinopyroxenes separated from amphibole clinopyroxenite xenoliths—correlates positively with the δD values of clinopyroxene megacrysts for each locality, indicating that structurally bond hydrogen in clinopyroxenes may have δD values higher than molecular water in inclusions. This implies that there may be a significant hydrogen isotope fractionation for structural hydroxyl during crystallization of clinopyroxene, while for molecular water there may be no or only negligible isotope fractionation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adam J, Turner M, Hauri HE, Turner S (2016) Crystal/melt partitioning of water and other volatiles during the near-solidus melting of mantle peridotite: comparisons with non-volatile incompatible elements and implications for the generation of intraplate magmatism. Am Mineral. doi:10.2138/am-2016-5437

    Google Scholar 

  • Aizawa Y, Barnhoorn A, Faul UH, FitzGerald JD, Jackson I, Kovács I (2008) Seismic properties of Anita Bay dunite: an exploratory study of the influence of water. J Petrol 49:841–855. doi:10.1093/petrology/egn007

    Article  Google Scholar 

  • Aubaud C, Hauri EH, Hirschmann MM (2004) Hydrogenpartition coefficients between nominally anhydrous minerals and basaltic melts. Geophys Res Lett. doi:10.1029/2004GL021341

    Google Scholar 

  • Aubaud C, Withers AC, Hirschmann MM, LA GuanY Leshin, Mackwell SJ, Bell DR (2007) Intercalibration of FTIR and SIMS for hydrogen measurements in glasses and nominally anhydrous minerals. Am Mineral 92:811–828

    Article  Google Scholar 

  • Balogh KA, Árva-Sós E, Pécskay Z, Ravasz-Baranyai L (1986) K/Ar dating of post-Sarmatian alkali basaltic rocks in Hungary. Acta Mineral Petrogr 28:75–93

    Google Scholar 

  • Barnes VE (1930) Changes in hornblende at about 800 °C. Am Mineral 15:393–417

    Google Scholar 

  • Bell DR, Ihinger PD (2000) The isotopic composition of hydrogen in nominally anhydrous mantle minerals. Geochim Cosmochim Acta 64:2109–2118. doi:10.1016/S0016-7037(99)00440-8

    Article  Google Scholar 

  • Bell DR, Ihinger PD, Rossman GR (1995) Quantitative analysis of trace OH in garnet and pyroxenes. Am Mineral 80:465–474

    Article  Google Scholar 

  • Bonadiman C, Hao YT, Coltorti M, Dallai L, Faccini B, Huang Y, Xia QK (2009) Water contents of pyroxenes in intraplate lithospheric mantle. Eur J Mineral 21:637–647. doi:10.1127/0935-1221/2009/0021-1935

    Article  Google Scholar 

  • Bromiley GD, Keppler H, McCammon C, Bromiley F, Jacobsen SD (2004) Hydrogen solubility and speciation in natural, gem-quality chromian diopside. Am Mineral 89:941–949

    Article  Google Scholar 

  • Chalot-Prat F, Boullier AM (1997) Metasomatism in the subcontinental mantle beneath the Eastern Carpathians (Romania): new evidence from trace element geochemistry. Contrib Mineral Petrol 129(4):284–307. doi:10.1007/s004100050338

    Article  Google Scholar 

  • Chaussidon M, Jambon A (1994) Boron content and isotopic composition of oceanic basalts: geochemical and cosmochemical implications. Earth Planet Sci Lett 121:277–291. doi:10.1016/0012-821X(94)90073-6

    Article  Google Scholar 

  • Chen DG, Peng ZC (1988) K–Ar ages and Pb, Sr isotopic characteristics of some Cenozoic volcanic rocks from Anhui and Jiangsu provinces, China. Acta Petrol Sin 31:3–12 (in Chinese with English abstract)

    Google Scholar 

  • Chen RX, Zheng YF, Gong B, Zhao ZF, Gao TS, Chen B, Wu YB (2007) Origin of retrograde fluid in ultrahighpressure metamorphic rocks: constraints from mineral hydrogen isotope and water content changes in eclogite–gneiss transitions in the Sulu orogen. Geochim Cosmochim Acta 71:2299–2325. doi:10.1016/j.gca.2007.02.012

    Article  Google Scholar 

  • Clog M, Aubaud C, Cartigny P, Dosso L (2013) The hydrogen isotopic composition and water content of southern Pacific MORB: a reassessment of the D/H ratio of the depleted mantle reservoir. Earth Planet Sci Lett 381:156–165. doi:10.1016/j.epsl.2013.08.043

    Article  Google Scholar 

  • Demény A (1995) H isotope fractionation due to hydrogen-zinc reactions and its implications on D/H analysis of water samples. Chem Geol 121:19–25. doi:10.1016/0009-2541(94)00155-2

    Article  Google Scholar 

  • Demény A, Siklósy Z (2008) Combination of off-line preparation and continuous flow mass spectrometry: D/H analyses of inclusion waters. Rapid Commun Mass Spectrom 22:1329–1334. doi:10.1002/rcm.3473

    Article  Google Scholar 

  • Demény A, Vennemann TW, Hegner E, Nagy G, Milton JA, Embey-Isztin A, Homonnay Z, Dobosi G (2004) Trace element and C-O–Sr–Nd isotope evidence for subduction-related carbonate-silicate melts in mantle xenoliths (Pannonian Basin, Hungary). Lithos 75:89–113. doi:10.1016/j.lithos.2003.12.016

    Article  Google Scholar 

  • Demény A, Vennemann TW, Harangi S, Homonnay Z, Fórizs I (2006) H2O–δD–FeIII relations of dehydrogenation and dehydration processes in magmatic amphiboles. Rapid Commun Mass Spectrom 20:919–925. doi:10.1002/rcm.2380

    Article  Google Scholar 

  • Demény A, Harangi S, Vennemann TW, Casillas R, Horváth P, Milton AJ, Mason PRD, Ulianov A (2012) Amphiboles as indicators of mantle source contamination: combined evaluation of stable H and O isotope compositions and trace element ratios. Lithos 152:141–156. doi:10.1016/j.lithos.2012.07.001

    Article  Google Scholar 

  • Demouchy S, Bolfan-Casanova N (2016) Distribution and transport of hydrogen in the lithospheric mantle: a review. Lithos 240:402–425. doi:10.1016/j.lithos.2015.11.012

    Article  Google Scholar 

  • Denis CMM, Demouchy S, Shaw CSJ (2013) Evidence of dehydration in peridotites from Eifel Volcanic Field and estimates of the rate of magma ascent. J Volcanol Geotherm Res 258:85–99. doi:10.1016/j.jvolgeores.2013.04.010

    Article  Google Scholar 

  • Dixon JE, Stolper EM, Holloway JR (1995) An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part I: calibration and solubility models. J Petrol 36(6):1607–1631

    Google Scholar 

  • Dobosi G, Jenner GA (1999) Petrologic implications of trace element variation in clinopyroxene megacrysts from the Nograd volcanic province, north Hungary: a study by laser ablation microprobe-inductively coupled plasma-mass spectrometry. Lithos 46:731–749. doi:10.1016/S0024-4937(98)00093-0

    Article  Google Scholar 

  • Dobosi G, Jenner GA, Embey-Isztin A (1998) Clinopyroxene/orthopyroxene trace element partition coefficients in spinel peridotite xenoliths. Contrib Mineral Petrol 110:321–328

    Google Scholar 

  • Dobosi G, Downes H, Embey-Isztin A, Jenner GA (2003) Origin of megacrysts and pyroxenite xenoliths from the Pliocene alkali basalts of the Pannonian Basin (Hungary). Neues Jb Miner Abh 178:217–237. doi:10.1127/0077-7757/2003/0178-0217

    Article  Google Scholar 

  • Dobson PF, Epstein S, Stolper EM (1989) Hydrogen isotope fractionation between coexisting vapor and silicate glasses and melts at low pressure. Geochim Cosmochim Acta 53:2723–2730. doi:10.1016/0016-7037(89)90143-9

    Article  Google Scholar 

  • Doppler G, Bakker RJ, Baumgartner M (2013) Fluid inclusion modification by H2O and D2O diffusion: the influence of inclusion depth, size, and shape in re-equilibration experiments. Contrib Mineral Petrol 165:1259–1274. doi:10.1007/s00410-013-0857-6

    Article  Google Scholar 

  • Dyar MD, Martin SV, Mackwell SJ, Carpenter S, Grant CA, McGuire AV (1996) Crystal chemistry of Fe3+, H+ and D/H in mantle derived augite from Dish Hill: implications for alteration during transport. In: Dyar MD, McCammon C, Schaefer MW (eds) Mineral spectroscopy, a tribute to R. G. Burns, vol 5. Geochem Soc Spec Publ, Houston, pp 289–304

    Google Scholar 

  • Embey-Isztin A, Dobosi GA (1997) Kárpát-Pannon térség neogén alkáli bazaltjainak nyomelem- és izotópgeokémiai viszonyai: következtetések a köpenybeli forráskőzetek jellegeire. Földtani Közlöny 127:321–351 (in Hungarian with English abstract)

    Google Scholar 

  • Embey-Isztin A, Downes H, James DE, Upton BGJ, Dobosi G, Ingram GA, Harmon RS, Scharbert HG (1993) The petrogenesis of Pliocene alkaline volcanic rocks from the Pannonian Basin, Eastern Central Europe. J Petrol 34:317–343. doi:10.1093/petrology/34.2.317

    Article  Google Scholar 

  • Falus G, Tommasi A, Ingrin J, Szabó C (2008) Deformation and seismic anisotropy of the lithospheric mantle in the southeastern Carpathians inferred from the study of mantle xenoliths. Earth Planet Sci Lett 272:50–64. doi:10.1016/j.epsl.2008.04.035

    Article  Google Scholar 

  • Fourel F, Martineau F, Seris M, Lécuyer C (2014) Simultaneous N, C, S stable isotope analyses using a new purge and trap elemental analyzer and an isotope ratio mass spectrometer. Rapid Commun Mass Spectrom 28:2587–2594. doi:10.1002/rcm.7048

    Article  Google Scholar 

  • Fourel F, Martineau F, Seris M, Lécuyer C (2015) Measurement of 34S/32S ratios of NBS 120c and BCR 32 phosphorites using purge and trap EA-IRMS technology. Geostand Geoanal Res 39:47–53. doi:10.1111/j.1751-908X.2014.00297.x

    Article  Google Scholar 

  • Gavrilenko P (2008) Water solubility in diopside. Ph.D. thesis, Bayerisches Geoinst., Univ. Bayreuth, Bayreuth, Germany, pp 133

  • Girard J, Chen J, Raterron P, Holyoke CW (2013) Hydrolytic weakening of olivine at mantle pressure: evidence of [100](010) slip system softening from single-crystal deformation experiments. Phys Earth Planet Int 216:12–20. doi:10.1016/j.pepi.2012.10.009

    Article  Google Scholar 

  • Gleeson SA, Roberts S, Fallick AE, Boyce AJ (2008) Micro-Fourier transform infrared (FT-IR) and δD value investigation of hydrothermal vein quartz: interpretation of fluid inclusion δD values in hydrothermal systems. Geochim Cosmochim Acta 72:4595–4606. doi:10.1016/j.gca.2008.06.014

    Article  Google Scholar 

  • Gong B, Zheng YF, Chen RX (2007) TC/EA-MS online determination of hydrogen isotope composition and water concentration in eclogitic garnet. Phys Chem Minerals 34:687–698. doi:10.1007/s00269-007-0184-4

    Article  Google Scholar 

  • Graham CM, Sheppard SMF, Heaton THE (1980) Experimental hydrogen isotope studies, I. Systematics of hydrogen isotope fractionation in the systems epidote–H2O, zoisite–H2O and AlO-OH.–H2O. Geochim Cosmochim Acta 44:353–364. doi:10.1016/0016-7037(80)90143-X

    Article  Google Scholar 

  • Graham CM, Harmon RS, Sheppard SMF (1984) Experimental hydrogen isotope studies, IV. Systematics of hydrogen isotope exchange between amphibole and water. Am Mineral 69:128–138

    Google Scholar 

  • Grant K, Gleeson SA, Roberts S (2003) The high-temperature behavior of defect hydrogen species in quartz: implications for hydrogen isotope studies. Am Mineral 88:262–270

    Article  Google Scholar 

  • Green DH (1973) Experimental melting studies on a model upper mantle composition at high pressures under water-saturated and water-undersaturated conditions. Earth Planet Sci Lett 19:37–53

    Article  Google Scholar 

  • Green DH, Hibberson WO, Rosenthal A, Kovács I, Yaxley GM, Falloon TJ, Brink F (2014) Experimental study of the influence of water on melting and phase assemblages in the upper mantle. J Petrol 55:2067–2096. doi:10.1093/petrology/egu050

    Article  Google Scholar 

  • Hauri EH, Wang JH, Dixon JE, King PL, Mandeville C, Newman S (2002) SIMS analysis of volatiles in silicate glasses 1. Calibration, matrix effects and comparisons with FTIR. Chem Geol 183:99–114. doi:10.1016/S0009-2541(01)00375-8

    Article  Google Scholar 

  • Hauri EH, Gaetani GA, Green TH (2006) Partitioning of water during melting of the Earth’s upper mantle at H2O-undersaturated conditions. Earth Planet Sci Lett 248:715–734. doi:10.1016/j.epsl.2006.06.014

    Article  Google Scholar 

  • Hidas K, Guzmics T, Cs Szabó, Kovács I, Bodnar RJ, Zajacz Z, Zs Nédli, Vaccari L, Perucchi A (2010) Coexisting silicate melt inclusions and H 2 O-bearing, CO 2-rich fluid inclusions in mantle peridotite xenoliths from the Carpathian–Pannonian region (central Hungary). Chem Geol 274:1–18. doi:10.1016/j.chemgeo.2010.03.004

    Article  Google Scholar 

  • Honma H, Kusakabe M, Kagami H, Iizumi S, Sakai H, Kodama Y, Kimura M (1991) Major and trace-element chemistry and D/H, 18O/16O, 87Sr/86Sr and 143Nd/144Nd ratios of rocks from the spreading center of the Okinawa trough, a marginal back-arc basin. Geochem J 25:121–136

    Article  Google Scholar 

  • Horváth F (1993) Towards a mechanical model for the formation of the Pannonian Basin. Tectonophysics 226:333–357. doi:10.1016/0040-1951(93)90126-5

    Article  Google Scholar 

  • Horváth F, Bada G, Szafián P, Tari G, Ádám A, Cloetingh S (2006) Formation and deformation of the Pannonian basin: constraints from observational data. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics, vol 32. Geological Society, London, pp 191–206

    Google Scholar 

  • Horváth F, Musitz B, Balázs A, Végh A, Uhrin A, Nádor A, Wórum G (2015) Evolution of the Pannonian Basin and its geothermal resources. Geothermics 53:328–352. doi:10.1016/j.geothermics.2014.07.009

    Article  Google Scholar 

  • Ingrin J, Skogby H (2000) Hydrogen in nominally anhydrous upper-mantle minerals: concentration levels and implications. Eur J Mineral 12:543–570

    Article  Google Scholar 

  • Ingrin J, Hercule S, Charton T (1995) Diffusion of hydrogen in diopside results of dehydration experiments. J Geophys Res Solid Earth 100:15489–15499. doi:10.1029/95JB00754

    Article  Google Scholar 

  • Jackson I, FitzGerald JD, Faul UH, Tan BH (2002) Grain-size-sensitive seismic wave attenuation in polycrystalline olivine. J Geophys Res Solid Earth 107:2001J. doi:10.1029/B001225

    Article  Google Scholar 

  • Kaminski E (2002) The influence of water on the development of lattice preferred orientation in olivine aggregates. Geophys Res Lett. doi:10.1029/2002GL014710

    Google Scholar 

  • Karato SI (2006) Remote sensing of hydrogen in Earth’s mantle. In: Keppler H, Smyth JR (eds) Water in nominally anhydrous minerals, vol 62., Reviews in mineralogy and geochemistryMineralogical Society of America and Geochemical Society, Chantilly, pp 343–375

    Google Scholar 

  • Karato SI (2011) Water distribution across the mantle transition zone and its implications for global material circulation. Earth Planet Sci Lett 301:413–423. doi:10.1016/j.epsl.2010.11.038

    Article  Google Scholar 

  • Karato SI, Wu P (1993) Rheology of the upper mantle: a synthesis. Science 260:771–778. doi:10.1126/science.260.5109.771

    Article  Google Scholar 

  • Koch-Müller M, Matsyuk SS, Wirth R (2004) Hydroxyl in omphacites and omphacitic clinopyroxenes of upper mantle to lower crustal origin beneath the Siberian platform. Am Mineral 89:921–931

    Article  Google Scholar 

  • Konzett J, Libowitzky E, Hejnya C, Millera C, Zanetti A (2008) Oriented quartz + calcic amphibole inclusions in omphacite from the Saualpe and Pohorje Mountain eclogites, Eastern Alps—An assessment of possible formation mechanisms based on IR- and mineral chemical data and water storage in Eastern Alpine eclogite. Lithos 106:336–350. doi:10.1016/j.lithos.2008.09.002

    Article  Google Scholar 

  • Kovács I, Hermann J, O’Neill HSC, FitzGerald JD, Sambridge M, Horváth G (2008) Quantitative absorbance spectroscopy with unpolarized light, Part II: experimental evaluation and development of a protocol for quantitative analysis of mineral IR spectra. Am Mineral 93:65–778

    Article  Google Scholar 

  • Kovács I, O’Neill HSC, Hermann J, Hauri EH (2010) Site-specific infrared OH absorption coefficients for water substitution into olivine. Am Mineral 95:292–299

    Article  Google Scholar 

  • Kovács I, Green DH, Rosenthal A, Hermann J, O’Neill HSC, Hibberson WO, Udvardi B (2012a) An experimental study of water in nominally anhydrous minerals in the upper mantle near the water saturated solidus. J Petrol 53:2067–2093. doi:10.1093/petrology/egs044

    Article  Google Scholar 

  • Kovács I, Gy Falus, Stuart G, Hidas K, Cs Szabó, Flower MFJ, Hegedűs E, Posgay K, Zilahi-Sebess L (2012b) Seismic anisotropy and deformation patterns in upper mantle xenoliths from the central Carpathian–Pannonian region: asthenospheric flow as a driving force for Cenozoic extension and extrusion? Tectonophysics 514:168–179. doi:10.1016/j.tecto.2011.10.022

    Article  Google Scholar 

  • Li ZXA, Lee CTA, Peslier AH, Lenardic A, Mackwell SJ (2008) Water contents in mantle xenoliths from the Colorado Plateau and vicinity: Implications for the mantle rheology and hydration-induced thinning of continental lithosphere. J Geophys Res Solid Earth. doi:10.1029/2007JB005540

    Google Scholar 

  • Liu Y, Hu Z, Gao S, Günther D, Xu J, Gao C, Chen H (2008) In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol 257:34–43. doi:10.1016/j.chemgeo.2008.08.004

    Article  Google Scholar 

  • Liu J, Xia QK, Deloule E, Ingrin J, Chen H, Feng M (2015) Water content and oxygen isotopic composition of alkali basalts from the Taihang Mountains, China: recycled oceanic components in the mantle source. J Petrol 56:681–702. doi:10.1093/petrology/egv013

    Article  Google Scholar 

  • McDonough WF, Sun S-S (1995) Composition of the Earth. Chem Geol 120:223–253. doi:10.1016/0009-2541(94)00140-4

    Article  Google Scholar 

  • Métrich N, Deloule E (2014) Water content, δD and δ11B tracking in the Vanuatu arc magmas (Aoba Island): insights from olivine-hosted melt inclusions. Lithos 206–207:400–408. doi:10.1016/j.lithos.2014.08.011

    Article  Google Scholar 

  • Millhollen G, Irving AJ, Wyllie PJ (1974) Melting interval of peridotite with 5.7 per cent water to 30 kilobars. J Geol 82:575–587

    Article  Google Scholar 

  • Morimoto N (1988) Nomenclature of pyroxenes. Am Mineral 73:123–1133

    Google Scholar 

  • Nazzareni S, Skogby H, Zanazzi PF (2011) Hydrogen content in clinopyroxene phenocrysts from Salina mafic lavas (Aeolian arc, Italy). Contrib Mineral Petrol 162:275–288. doi:10.1007/s00410-010-0594-z

    Article  Google Scholar 

  • O’Leary JA (2007) Hydrogen isotope geochemistry of the mantle: constraints from back arc basin basalts and mantle xenoliths. Dissertation (Ph.D.), California Institute of Technology. http://resolver.caltech.edu/CaltechETD:etd-12182006-072449

  • Panaiotu CG, Pécskay Z, Hambach U, Seghedi I, Panaiotu CE, Tetsumaru I, Orleanu M, Szakács A (2004) Short-lived Quaternary volcanism in the Persani Mountains (Romania) revealed by combined K–Ar and paleomagnetic data. Geol Carpath 55:333–339

    Google Scholar 

  • Pearce NJ, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newsl 21(1):115–144. doi:10.1111/j.1751-908X.1997.tb00538.x

    Article  Google Scholar 

  • Peslier AH (2010) A review of water contents of nominally anhydrous natural minerals in the mantles of Earth, Mars and the Moon. J Volcanol Geotherm Res 197:239–258. doi:10.1016/j.jvolgeores.2009.10.006

    Article  Google Scholar 

  • Peslier AH, Luhr F, Jeffrey P (2002) Low water contents in pyroxenes from spinel-peridotites of the oxidized, sub-arc mantle wedge. Earth Planet Sci Lett 201:69–86. doi:10.1016/S0012-821X(02)00663-5

    Article  Google Scholar 

  • Poreda R (1985) Helium-3 and deuterium in back-arc basalts: Lau Basin and the Mariana Trough. Earth Planet Sci Lett 73:244–254. doi:10.1016/0012-821X(85)90073-1

    Article  Google Scholar 

  • Sambridge M, Gerald JF, Kovács I, O’Neill HSC, Hermann J (2008) Quantitative absorbance spectroscopy with unpolarized light: part I. Physical and mathematical development. Am Mineral 93:751–764

    Article  Google Scholar 

  • Sato M (1978) Oxygen fugacity of basaltic magmas and the role of gas-forming elements. Geophys Res Lett 5:447–449. doi:10.1029/GL005i006p00447

    Article  Google Scholar 

  • Sheng YM, Xia QK, Dallai L, Yang XZ, Hao YT (2007) H2O contents and D/H ratios of nominally anhydrous minerals from ultrahigh-pressure eclogites of the Dabie orogen, eastern China. Geochim Cosmochim Acta 71:2079–2103. doi:10.1016/j.gca.2007.01.018

    Article  Google Scholar 

  • Sheppard SMF, Harris C (1985) Hydrogen and oxygen isotope geochemistry of Ascension Island lavas and granites: variation with crystal fractionation and interaction with seawater. Contrib Mineral Petrol 91:74–81. doi:10.1007/BF00429429

    Article  Google Scholar 

  • Smyth J, Bell D, Rossman G (1991) Incorporation of hydroxyl in upper-mantle clinopyroxenes. Nature 351:732–735. doi:10.1038/351732a0

    Article  Google Scholar 

  • Stalder R, Ludwig T (2007) OH incorporation in synthetic diopside. Eur J Mineral 19:373–380. doi:10.1127/0935-1221/2007/0019-1721

    Article  Google Scholar 

  • Stenina NG (2004) Water-related defects in quartz. Bull Geosci 79:251–268

    Google Scholar 

  • Sundvall R, Stalder R (2011) Water in upper mantle pyroxene megacrysts and xenocrysts: a survey study. Am Mineral 96:1215–1227

    Article  Google Scholar 

  • Suzuoki T, Epstein S (1976) Hydrogen isotope fractionation between OH-bearing minerals and water. Geochim Cosmochim Acta 40:1229–1240. doi:10.1016/0016-7037(76)90158-7

    Article  Google Scholar 

  • Szabó Á (2013) Metaszomatikus olvadék hatása a Kelet-Erdélyi medence alatti litoszférikus köpenyre, M.Sc. thesis, Lithosphere Research Group (LRG), Eötvös University, Budapest, pp. 67. (in Hungarian with English Abstract)

  • Tenner TJ, Hirschmann MM, Withers AC, Hervig RL (2009) Hydrogen partitioning between nominally anhydrous upper mantle minerals and melt between 3 and 5 GPa and applications to hydrous peridotite partial melting. Chem Geol 262:42–56. doi:10.1016/j.chemgeo.2008.12.006

    Article  Google Scholar 

  • Vaselli O, Downes H, Thirlwall M, Dobosi G, Coradossi N, Seghedi I, Szakacs A, Vannucci R (1995) Ultramafic xenoliths in Plio-Pleistocene alkali basalts from the Eastern Transylvanian Basin: depleted mantle enriched by vein metasomatism. J Petrol 36:23–53. doi:10.1093/petrology/36.1.23

    Article  Google Scholar 

  • Vennemann TW, O’Neil JR (1993) A simple and inexpensive method of hydrogen isotope and water analyses of minerals and rocks based on zinc reagent. Chem Geol 103:227–234. doi:10.1016/0009-2541(93)90303-Z

    Article  Google Scholar 

  • Wang CY, Flesch LM, Silver PG, Chang LJ, Chan WW (2008) Evidence for mechanically coupled lithosphere in central Asia and resulting implications. Geology 36:363–366. doi:10.1130/G24450A.1

    Article  Google Scholar 

  • Wijbrans J, Németh K, Martin U, Balogh K (2007) Ar-40/Ar-39 geochronology of Neogene phreatomagmatic volcanism in the western Pannonian Basin, Hungary. J Volcanol Geotherm Res 164:193–204. doi:10.1016/j.jvolgeores.2007.05.009

    Article  Google Scholar 

  • Withers AC, Bureau H, Raepsaet C, Hirschmann MM (2012) Calibration of infrared spectroscopy by elastic recoil detection analysis of H in synthetic olivine. Chem Geol 334:92–98. doi:10.1016/j.chemgeo.2012.10.002

    Article  Google Scholar 

  • Wyllie PJ (1978) Mantle fluid compositions buffered in peridotite–CO2–H2O by carbonates, amphibole, and phlogopite. J Geol 86:687–713

    Article  Google Scholar 

  • Xia QK, Dallai L, Deloule E (2004) Oxygen and hydrogen isotope heterogeneity of clinopyroxene megacrysts from Nushan Volcano, SE China. Chem Geol 209:137–151. doi:10.1016/j.chemgeo.2004.04.028

    Article  Google Scholar 

  • Xia QK, Liu J, Liu SC, Kovács I, Feng M, Dang L (2013) High water content in Mesozoic primitive basalts of the North China Craton and implications on the destruction of cratonic mantle lithosphere. Earth Planet Sci Lett 361:85–97. doi:10.1016/j.epsl.2012.11.024

    Article  Google Scholar 

  • Xu Z, Zheng YF, Zhao ZF, Gong B (2014) The hydrous properties of subcontinental lithospheric mantle: constraints from water content and hydrogen isotope composition of phenocrysts from Cenozoic continental basalt in North China. Geochim Cosmochim Acta 143:285–302. doi:10.1016/j.gca.2013.12.025

    Article  Google Scholar 

  • Xu Z, Gong B, Zhao Z (2016) The water content and hydrogen isotope composition of continental lithospheric mantle and mantle-derived mafic igneous rocks in eastern China. Sci China Earth Sci. doi:10.1007/s11430-015-5247-7

    Google Scholar 

  • Yang XZ, Xia QK, Deloule E, Dallai L, Fan QC, Feng M (2008) Water in minerals of the continental lithospheric mantle and overlying lower crust: a comparative study of peridotite and granulite xenoliths from the North China Craton. Chem Geol 256:33–45. doi:10.1016/j.chemgeo.2008.07.020

    Article  Google Scholar 

  • Zajacz Z, Kovács I, Szabó C, Halter W, Pettke T (2007) Evolution of mafic alkaline melts crystallized in the uppermost lithospheric mantle: a melt inclusion study of olivine-clinopyroxenite xenoliths, northern Hungary. J Petrol 48(5):853–883

    Article  Google Scholar 

  • Zanetti A, Vannucci R, Oberti R, Dobosi G (1995) Trace element composition and crystal chemistry of mantle amphiboles from the Carpatho–Pannonian Region. Acta Vulcanol 7:265–276

    Google Scholar 

Download references

Acknowledgments

IK was supported by the Bolyai Postdoctoral Fellowship Program and a Postdoctoral Grant of the Hungarian Scientific Research Fund (PD-101683). The authors acknowledge J. Ingrin and Cs. Szabó for discussions on an earlier version of this manuscript and the assistance of the Lithosphere Fluidum Research Lab, Judith Mihály and Csaba Németh (MTA TTK). The authors kindly acknowledge the careful editoral handling of Jochen Hoefs and the constructive suggestions of three anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to István Kovács.

Additional information

Communicated by Jochen Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

SFigure 1

Mg# vs. Al atom per formula unit (a.p.f.u.) in clinopyroxenes (a); Mg# vs. Ti atom per formula unit (a.p.f.u.) in clinopyroxenes (b). Legend for the different localities is on Fig. 1a. Data are taken from STable 1 (EPS 1382 kb)

SFigure 2

Primitive mantle (McDonough and Sun 1995) normalized trace element patterns of clinopyroxenes (a); Primitive mantle normalized rare earth elements (REE) patterns of clinopyroxenes (b). Data are taken from STable 2 (EPS 1862 kb)

SFigure 3

Ba/Nb vs. Th/Nb ratios of clinopyroxenes (a); Sr/Zr vs. Ce/Zr ratios of clinopyroxenes (b). Data are taken from STable 2 (EPS 1970 kb)

SFigure 4

H2O (ppm wt.%) in fluids (i.e. calculated as the difference between the ‘on-line’ mass spectrometry (bulk ‘water’) and micro-FTIR (structural hydroxyl)) vs. δD of hydrogen in clinopyroxenes. Data are taken from Table 1 (EPS 1311 kb)

SFigure 5

δD values (‰) of structural hydroxyl in clinopyroxene vs. that of melt as a function of fractional crystallization (see text for details) (EPS 1114 kb)

STable 1

Major element compositions of clinopyroxenes determined by EMPA for Nushan and Persány xenoliths and by LA-ICP-MS for BBHVF xenoliths (Szigliget, Kapolcs, Szentbékkálla) given in oxide wt.% (XLSX 23 kb)

STable 2

Minor element compositions of clinopyroxenes determined by LA-ICP-MS (given in ppm wt.%) (XLSX 26 kb)

Supplementary material 8 (XLSX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovács, I., Demény, A., Czuppon, G. et al. Water concentrations and hydrogen isotope compositions of alkaline basalt-hosted clinopyroxene megacrysts and amphibole clinopyroxenites: the role of structural hydroxyl groups and molecular water. Contrib Mineral Petrol 171, 38 (2016). https://doi.org/10.1007/s00410-016-1241-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-016-1241-0

Keywords

Navigation