Skip to main content
Log in

Effects of melt composition on Fe3+/Fe2+ in silicate melts: a step to model ferric/ferrous ratio in multicomponent systems

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The effect of Al2O3, MgO and total iron on the ferric/ferrous ratio in silicate melts was investigated in model silicate melts in the temperature range 1400–1550 °C at 1 atm total pressure. The experiments were done mostly in air and partially in pure CO2. It is demonstrated that an increase in Al2O3 concentration in a basaltic melt results in a moderate decrease of Fe3+/Fe2+ ratio. In contrast, the increase in Al2O3 in more silicic melts results in a much more pronounced decrease of Fe3+/Fe2+ ratio. The increase of MgO concentration in a basaltic melt results in a moderate increase of Fe3+/Fe2+ ratio but has a negligible effects in more silicic melts. The different behavior of Al2O3 and MgO in basaltic and more silicic melts indicates that at constant TfO2 conditions, the effects of melt composition on ferric/ferrous ratio cannot be predicted accurately as a function of Σd i X i where d i are fixed empirical coefficients and X i are mole fractions of the main oxide component in silicate melts. We suggest an alternative approach which accounts for the interaction of cations in complex silicate melts. Based on the data obtained in this study, an equation predicting the ferric/ferrous ratio of ultramafic to silicic melts at air conditions with changing SiO2, TiO2, Al2O3, total iron, MgO and P2O5 is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ariskin AA (2003) The compositional evolution of differentiated liquids from the Skaergaard layered series as determined by geochemical thermometry. Russ J Earth Sci 5:1–29

    Article  Google Scholar 

  • Bézos A, Humler E (2005) The Fe3+/∑Fe ratio of MORB glasses and their implications for mantle melting. Geochim Cosmochim Acta 69:711–725

    Article  Google Scholar 

  • Borisov AA (1988) Temperature dependence of redox reactions involving variable-valency elements in model and natural melts. Geochem Int 25:85–93

    Google Scholar 

  • Borisov AA (2010) Ferric–ferrous ratio in liquid iron oxides: analysis and applications to natural basaltic melts. Petrology 18:471–481

    Article  Google Scholar 

  • Borisov A, McCammon C (2010) The effect of silica on ferric/ferrous ratio in silicate melts: an experimental investigation using Mössbauer spectroscopy. Am Mineral 95:545–555

    Article  Google Scholar 

  • Borisov AA, Shapkin AI (1990) A new empirical equation relating Fe3+/Fe2+ in magmas to their composition, oxygen fugacity, and temperature. Geochem Int 27:111–116

    Google Scholar 

  • Borisov A, Behrens H, Holtz F (2013) The effect of titanium and phosphorus on ferric/ferrous ratio in silicate melts: an experimental study. Contrib Minerol Petrol 166:1577–1591

    Article  Google Scholar 

  • Christie DM, Carmichael ISE, Langmuir CH (1986) Oxidation state of mid-ocean ridge basalt glasses. Earth Planet Sci Lett 79:397–411

    Article  Google Scholar 

  • Cottrell E, Kelley KA (2011) The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle. Earth Planet Sci Lett 305:270–282

    Article  Google Scholar 

  • Cottrell E, Kelley KA (2013) Redox heterogeneity in mid-ocean ridge basalts as a function of mantle source. Science 340:1314–1317

    Article  Google Scholar 

  • Deines PS, Nafziger RH, Ulmer GC, Woermann E (1974) Temperature-oxygen fugacity tables for selected gas mixtures in the system C–H–O at one atmosphere total pressure. Bulletin of the Earth and Mineral Sciences, Experimental Station. No 88. Pennsylvania State University, USA

  • Goldman DS (1983) Oxidation equilibrium of iron in borosilicate glass. J Am Ceram Soc 66:205–209

    Article  Google Scholar 

  • Jayasuriya KD, O’Neil HSC, Berry A, Campbell SJ (2004) A Mössbauer study of the oxidation state of Fe in silicate melts. Am Mineral 89:1597–1609

    Google Scholar 

  • Kilinc A, Carmichael ISE, Rivers ML, Sack RO (1983) The ferric–ferrous ratio of natural silicate liquids equilibrated in air. Contrib Mineral Petrol 83:136–140

    Article  Google Scholar 

  • Kress VC, Carmichael ISE (1988) Stoichiometry of the iron oxidation reaction in silicate melts. Am Mineral 73:1267–1274

    Google Scholar 

  • Kress VC, Carmichael ISE (1989) The lime–iron–silicate melt system: Redox and volume systematics. Geochim Cosmochim Acta 53:2883–2889

    Article  Google Scholar 

  • Kress VC, Carmichael ISE (1991) The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib Mineral Petrol 108:82–92

    Article  Google Scholar 

  • Lange RA, Carmichael ISE (1989) Ferric/ferrous equilibria in Na2O–FeO–Fe2O3–SiO2 melts: effects of analytical techniques on derived partial molar volumes. Geochim Cosmochim Acta 53:2195–2204

    Article  Google Scholar 

  • Majumdar R, Lahiri D (1975) Equilibrium studies of Fe in alkali phosphate glasses. J Am Ceram Soc 58:99–101

    Article  Google Scholar 

  • Mukhopadhyay B, Basu S, Holdaway MJ (1993) A discussion of Margules-type formulations for multicomponent solutions with a generalized approach. Geochim Cosmochim Acta 57:277–283

    Article  Google Scholar 

  • Myers J, Eugster HP (1983) The system Fe–Si–O: oxygen buffer calibrations to 1500 K. Contrib Mineral Petrol 82:75–90

    Article  Google Scholar 

  • Mysen BO, Virgo D, Neumann E-R, Seifert FA (1985) Redox equilibria and the structural states of ferric and ferrous iron in melts in the system CaO–MgO–Al2O3–SiO2–Fe–O: relationships between redox equilibria, melt structure and liquidus phase equilibria. Am Mineral 70:317–331

    Google Scholar 

  • Paul A, Douglas RW (1965) Ferrous–ferric equilibrium in binary alkali silicate glasses. Phys Chem Glasses 6:207–211

    Google Scholar 

  • Sack RO, Carmichael ISE, Rivers ML, Ghiorso MS (1980) Ferric–ferrous equilibria in natural silicate liquids at 1 bar. Contrib Mineral Petrol 75:369–376

    Article  Google Scholar 

  • Schuessler JA, Botcharnikov RE, Behrens H, Misiti V, Freda C (2008) Oxidation state of iron in hydrous phono-tephritic melts. Am Mineral 93:1493–1504

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A A32:751–767

    Article  Google Scholar 

  • Thornber CR, Roeder PL, Foster JR (1980) The effect of composition on the ferric–ferrous ratio in basaltic liquids at atmospheric pressure. Geochim Cosmochim Acta 44:525–532

    Article  Google Scholar 

  • Toplis and Carroll (1996) Differentiation of ferro-basaltic magmas under conditions open and closed to oxygen: implications for the Skaergaard intrusion and other natural systems. J Petrol 37:837–858

    Article  Google Scholar 

  • Wilson AD (1960) The micro-determination of ferrous iron in silicate minerals by a volumetric and a colorimetric method. Analyst 85:823–827

    Article  Google Scholar 

Download references

Acknowledgments

The stay of AB in Hannover was funded by the German Science Foundation (DFG project Ho 1337/30-1). We thank Tim Müller and Eric Wolff for the electron microprobe assistance and Florian Pohl for the help in the determination of ferric/ferrous ratios in glasses. We are grateful to Alexey Ariskin and to an anonymous reviewer for their comments and suggestions which allowed us to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Borisov.

Additional information

Communicated by Chris Ballhaus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisov, A., Behrens, H. & Holtz, F. Effects of melt composition on Fe3+/Fe2+ in silicate melts: a step to model ferric/ferrous ratio in multicomponent systems. Contrib Mineral Petrol 169, 24 (2015). https://doi.org/10.1007/s00410-015-1119-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-015-1119-6

Keywords

Navigation