Skip to main content
Log in

U-Pb columbite-tantalite chronology of rare-element pegmatites using TIMS and Laser Ablation-Multi Collector-ICP-MS

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

U-Pb isotopic analyses using TIMS and Laser Ablation-Multi Collector-ICP-MS were carried out on columbite-tantalite minerals from three suites of rare-element (Li, Cs, Ta) pegmatites in the Superior Province of Canada. Conventional TIMS analyses of these columbite-tantalite crystals produce scattered data and reverse discordance even after HF leaching of the grains prior to dissolution, possibly reflecting the incomplete removal of the open-system metamict segments during sample preparation. LA-MC-ICP-MS analyses of unleached, primary columbite free from inclusions and alteration give consistent and precise (<0.5%) Pb-Pb ages, demonstrating the utility of this approach. However, normal and reverse discordance is also observed in U-Pb data from LA-MC-ICP-MS analyses. This discordance represents either U-Pb mobilisation during recent weathering, sample preparation and/or an analytical artefact originating from variable elemental fractionation between U and Pb during ablation and ionisation that itself may have its origin in the contrasting metamictization of the dated columbite and the monazite standard used. Best age estimates of columbite from pegmatites in the Superior Province are; 2670±5 Ma for the Pakeagama Lake pegmatite, 2644±7 Ma for the Separation Rapids group, and 2665±8 Ma for the Mavis Lake group. The ages broadly show that the rare-element pegmatites are temporally synchronous with adjacent peraluminous granites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4a-d
Fig. 5a-d
Fig. 6a,b
Fig. 7a–c
Fig. 8a–d
Fig. 9

Similar content being viewed by others

References

  • Abella P.A., Corbella M. and Melgarejo J.C. (1995) Nb-Ta- minerals from the Cap de Creus pegmatite field, eastern Pyrenees: distribution and geochemical trends. Mineral Petrol 55, 53–69.

    Google Scholar 

  • Breaks F.W. and Moore J.M. (1992) The Ghost Lake Batholith, Superior Province of Northwestem Ontario: A Fertile, S-Type, Peraluminous Granite—Rare-Element Pegmatite System. Canadian Mineralogist 30, 835–875.

    Google Scholar 

  • Breaks F.W., Tindle A.G. and Smith S.R. (1999a) Geology, mineralogy and exploration potential of the Big Mack pegmatite system : a newly discovered western extension of the Separation Rapids pegmatite group, NW Ontario., pp. 25–1 to 25–22. Ontario Geological Survey.

  • Breaks F.W., Tindle A.G. and Smith S.R. (1999b) Rare-metal mineralisation associated with the Berens River—Sachigo Subprovincial boundary, northwestem Ontario: Discovery of a new zone of complex-type, petalite subtype pegmatite and implications for future exploration. In Summary of Field Work and Other Activities 1998, pp. 168–182. Ontario Geological Survey.

  • Card K.D. and Ciesielski A. (1986) Subdivisions of the Superior Province. Geoscience Canada 13, 5–13.

  • Cern_ P. Chapman R. Göd R. Niedermayr G. Wise MA. (1989) Exsolution intergrowths of titanian ferrocolumbite and niobian rutile from the Weinebene spodumene pegmatites, Carinthia, Austria. Mineral Petrol 40:197–206.

    Google Scholar 

  • Cerny P. and Ercit T.S. (1985) Some recent advances in the mineralogy and geochemistry of Nb and Ta in rare-element granitic pegmatites. Bull. Mineral. 108, 499–532.

    Google Scholar 

  • Cerny P. and Meintzer R.E. (1988) Fertile granites in the Archean and Proterozoic fields of rare-element pegmatites: crustal environment, geochemistry and petrogenetic relationships. The Canadian Institute of Mining and Metallurgy. pp. 170–206.

  • Cerny P., Novak M. and Chapman R. (1992) Effects of siilimanite-grade metamorphism and shearing on Nb-Ta oxide minerals in granitic pegmatites: Marsikov, northern Moravia, Czechoslovakia. Canadian Mineralogist 30, 699–718.

    Google Scholar 

  • Corfu F. (2000) Extraction of Pb with artificially too-old ages during stepwise dissolution experiments on Archean zircon. Lithos 53(3–4), 279–291.

    Google Scholar 

  • Corfu F. and Davis D.W. (1991) A U-Pb Geochronological Framework for the Western Superior Province, Ontario. In Geology of Ontario (eds. P. C. Thurston, H. R. Williams, R. H. Sutcliffe and G. M. Stott), pp. 1335–1346. Ontario Geological Survey, Toronto.

  • Davis D.W., Krogh T.E. (2000) Preferential dissolution of 234U and radiogenic Pb from alpha-recoildamaged lattice sites in zircon; implications for thermal histories and Pb isotopic fractionation in the near surface environment. Chem Geol 172:41–58.

    Article  Google Scholar 

  • Geisler T. (2002) Isothermal annealing of partially metamict zircon: evidence for a three-stage recovery process. Phys Chem Minerals 29:420–429

    Article  CAS  Google Scholar 

  • Geisler T., Ulonska M., Schleicher H., Pidgeon RT., van Bronswijk W. (2001) Leaching and differential recrystallisation of metamict zircon under experimental hydrothermal conditions. Contrib Mineral Petrol 141:53–65.

    Google Scholar 

  • Geisler T., Pidgeon R. T., van Bronswijk W. and Kurtz R. (2002) Transport of uranium, thorium, and lead in metamict zircon under low-temperature hydrothermal conditions. Chemical Geology 191(1–3), 141–154.

    Google Scholar 

  • Gerstenberger H., Haase G, (1997) A highly effective emitter substance for mass spectrometric isotope ratio determinations. Chern. Geol. 136:309–312.

    Google Scholar 

  • Guillong M. and Günther D. (2002) Effect of particle size distribution on ICP-induced elemental fractionation in laser ablation-inductively coupled plasma-mass spectrometry. J. Anal. At. Spectrom., 17:831–837.

    Google Scholar 

  • Horn I., Rudnick R. and McDonough W.F. (2000) Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation-ICP-MS: application to U-Pb geochronology. Chemical Geology 164, 281–301.

    Google Scholar 

  • Horstwood M.S.A., Foster G.L., Parrish R.R., Noble S.R., Nowell G.M. (2003) Common-Pb corrected in situ U-Pb accessory mineral geochronology by LA-MC-ICP-MS. J. Anal. At. Spectrom. 8:837–847.

    Google Scholar 

  • Kosler J., Tubrett M. and Sylvester P. (2001) Application of Laser Ablation ICP-MS to U-Th-Pb dating of monazite. The Journal of Geostandards and Geoanalysis 25, 2.

    Google Scholar 

  • Langford F.F. and Morin J.A. (1976) The Development of the Superior Province of Nortwestern Ontario by Merging Island Arcs. American Journal of Science 276, 1023–1034.

    Google Scholar 

  • Larbi Y., Stevenson R., Breaks F.W., Machado N. and Gariepy C. (1999) Age and isotopic composition of late Archean leucogranites: implications for continental collisio in the westem Superior Province. Canadian Journal of Earth Sciences 36, 495–510.

    Google Scholar 

  • Li X.-h., Liang X.-r., Sun M., Guan H. and Malpas J.G. (2001) Precise 206Pb/238U age determination on zircons by laser ablation microprobe-inductively coupled plasma-mass spectrometry using continuous linear ablation. Chemical Geology 175, 209–219.

    Google Scholar 

  • Lindroos A., Romer R.L., Ehlers C. and Alviola R. (1996) Late-orogenic Svecofennian deformation in SW Finland constrained through pegmatite emplacement ages. Terra Nova 8, 567–574.

    Google Scholar 

  • London D. (1984) Experimental phase equilibria in the system LiAlSiO4-Si2O-H2O: a petrogenetic grid for lithium-rich pegmatites. American Mineralogist 69, 995–1004.

    Google Scholar 

  • London D. (1986) Magmatic-hydrothermal transition in the Tanco rare-element pegmatite: Evidence from fluid inclusions and phase equilibrium experiments. American Mineralogist 71, 376–395.

    Google Scholar 

  • London D. (1987) Intemal differentiation of rare-element pegmatites: Effects of boron, phosphorus and fluorine. Geochimica et Cosmochimica Acta 51, 403–420.

    Google Scholar 

  • London D., Morgan G.B., Babb H.A. and Loomis J.L. (1993) Behaviour and effects of phosphorus in the system Na2O-K2O-Al2O3-SiO2-P2O5-H2O at 200 MPa (H2O). Contrib. Mineral. Petrol. 113, 450–465.

    Google Scholar 

  • Ludwig K.R. (2000) Isoplot/Ex version 2.22, pp. 53. Berkely Geochronology Center. Special publication No. 1a.

  • Manhes G., Minster J.F., Allègre C.J. (1978) Comparative uranium-thorium-lead and rubidium-strontium study of the saint sèverin amphoterite: consequences for early solar system chronology. Earth Planet. Sci. Lett. 39:14–24.

    Google Scholar 

  • Mattinson JM (1997) Analysis of zircon by multi-step partial dissolution: the good, the bad, and the ugly. Geol Assoc Can Meet, Ottawa ‘97, Abstract A98.

  • Mattinson JM (2000) U-Pb Zircon Analysis by “Chemical Abrasion”: Combined High-Temperature Annealing and Partial Dissolution Analysis. EOS Trans Am Geophys Union 81:S27.

    Google Scholar 

  • Mattinson JM (2001) Zircon radiation damage, annealing, dissolution and Pb diffusion. 11th Annual VM Goldschmidt Conf. Abstr vol, 3625.pdf.

  • Mattinson J.M., Gaubard CM, Parkinson DL, McLelland WC (1996) U-Pb reverse discordance in zircons: the role of fine scale oscillatory zoning and sub-microscopic transport of Pb. Am Geophys Union Geophys Monogr 95, 355–370.

    Google Scholar 

  • Mauthner MHF, Mortensen JK, Groat LA, Echt TS (1995) Geochronology of the Little Nahanni pegmatite group, Selwyn Mountains, southwestern Northwest Terretories. Can J Earth Sci 32:2090–2097.

    CAS  Google Scholar 

  • Meldrum A, Boatner LA, Weber WJ, Ewing RC (1998) Radiation damage in zircon and monazite. Geochim Cosmochim Acta 62:2509–2520.

    Article  CAS  Google Scholar 

  • Pan Y. and Breaks F. W. (1997) Rare-Earth Elements in Fluorapatite, Separation Lake Area, Ontario: Evidence for S-Type Granite—Rare-Element Pegmatite Linkage. Canadian Mineralogist 35:659–671.

    CAS  Google Scholar 

  • Parrish R., Nowell G., Noble S.R., Horstwood M.A., Timmermann H., Shaw P. and Bowen I. (1999) LA-PIMMS: A New Method of U-Th-Pb Geochronology Using Micro-Sampling Techniques. J. Conf Abstr. 4(1), p.799.

    Google Scholar 

  • Romer R.L. (2003) Alpha-recoil in U-Pb geochronology: effective sample size matters. Contrib Mineral Petrol 145:481–491.

    Article  CAS  Google Scholar 

  • Romer R.L. and Smeds S.A. (1994) Implications of U-Pb ages of columbite-tantalites from granitic pegmatites for the Palaeoproterozoic accretion of 1.90–1.85 Ga magmatic arcs to the Baltic Shield. Precambrian Research 67, 141–158.

    Google Scholar 

  • Romer R.L. and Smeds S.A. (1996) U-Pb columbite ages of pegmatites from Sveconorwegian terranes in southwestem Sweden. Precambrian Research 76, 15–30.

    Google Scholar 

  • Romer R.L. and Smeds S.A. (1997) U-Pb columbite chronolgy of post-kinematic Palaeoproterozoic pegmatites in Sweden. Precambrian Research 82, 85–99.

    Google Scholar 

  • Romer R.L., Smeds S.A. and Cerny P. (1996) Crystal-chemical and genetic controls of U-Pb systematics of columbite-tantalite. Mineral Petrol 57, 243–260.

    Google Scholar 

  • Romer R.L. and Wright J.E. (1992) U-Pb dating of columbites: A geochronologic tool to date magmatism and ore deposits. Geochimica et Cosmochimica Acta 56, 2137–2142.

    Google Scholar 

  • Seydoux-Guillaume A-M, Paquette J-L, Wiedenbeck M, Montel J-M, Heinrich W (2003) Experimental resetting of the U-Th-Pb systems in monazite. Chem Geol 191:165–181.

    Article  Google Scholar 

  • Smith S.R. (2001) Geochemistry and Geochronology of Rare-Element Pegmatites from the Superior Province of Canada. Unpublished PhD thesis. The Open University, Milton Keynes, UK.

  • Stacey J. S. and Kramers J. D. (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26(2), 207–221.

    Google Scholar 

  • Thurston P.C. (1991) Northwestern Superior Province: Review and Terrane Analysis. In Geology of Ontario (eds. P.C. Thurston, H.R. Williams, R.H. Sutcliffe and G.M. Stott), pp. 81–144. Ontario Geological Survey, Toronto.

    Google Scholar 

  • Tilton G.R. 1973 Isotopic lead ages of chondritic meteorites. Earth Planet. Sci. Lett. 19, pp. 321–329.

    Google Scholar 

  • Tindle A.G. and Breaks F.W. (1998) Oxide minerals of the Separation Rapids rare-element granitic pegmatite group, northwestem Ontario. Canadian Mineralogist 36, 609–635.

    Google Scholar 

  • Tindle A.G. and Breaks F.W. (2000) Columbite-tantalite mineral chemistry from rare-element granitic pegmatites: Separation Lake area, N.W. Ontario, Canada. Mineral Petrol 70, 165–198.

    Google Scholar 

  • Weber WJ, Ewing RC, Wang L-M (1994) The radiation-induced crystalline-to-amorphous transition in zircon. J Mater Res 9:688–698.

    CAS  Google Scholar 

  • Willigers B.J.A., Baker J.A., Krogstad E. J. and Peate D.W. (2002) Precise and accurate in situ Pb-Pb dating of apatite, monazite, and sphene by laser ablation multiple-collector ICP-MS. Geochimica et Cosmocliimica Acta 66(6), 1051–1066.

    Google Scholar 

  • Wood S.A. and Williams-Jones A.E. (1993) Theoretical studies of the alteration of spodumene, petalite, eucryptite and pollucite in granitic pegmatites: exchange reactions with alkali feldspars. Contrib Mineral Petrol 114, 255–263.

    Google Scholar 

Download references

Acknowledgements

S. Smith acknowledges postgraduate studentship funding from The Open University and the Ontario Geological Survey. Analyses carried out at the NERC Isotope Geosciences Laboratory, Keyworth, were funded by ‘Isotopic Analytical Support’ from the Natural Environment Research Council, UK. Constructive reviews by R. Parrish and an anonymous reviewer greatly improved an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Smith.

Additional information

Editorial responsibility: T.L. Grove

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, S.R., Foster, G.L., Romer, R.L. et al. U-Pb columbite-tantalite chronology of rare-element pegmatites using TIMS and Laser Ablation-Multi Collector-ICP-MS. Contrib Mineral Petrol 147, 549–564 (2004). https://doi.org/10.1007/s00410-003-0538-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-003-0538-y

Keywords

Navigation