Skip to main content
Log in

Electronic Nose Technology in Respiratory Diseases

  • Review
  • Published:
Lung Aims and scope Submit manuscript

Abstract

Electronic noses (e-noses) are based on arrays of different sensor types that respond to specific features of an odorant molecule, mostly volatile organic compounds (VOCs). Differently from gas chromatography and mass spectrometry, e-noses can distinguish VOCs spectrum by pattern recognition. E-nose technology has successfully been used in commercial applications, including military, environmental, and food industry. Human-exhaled breath contains a mixture of over 3000 VOCs, which offers the postulate that e-nose technology can have medical applications. Based on the above hypothesis, an increasing number of studies have shown that breath profiling by e-nose could play a role in the diagnosis and/or screening of various respiratory and systemic diseases. The aim of the present study was to review the principal literature on the application of e-nose technology in respiratory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pauling L, Robinson AB, Teranishi R, Cary P (1971) Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proc Natl Acad Sci USA 68:2374–2376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Moser B, Bodrogi F, Eibl G et al (2005) Mass spectrometric profile of exhaled breath. Field study by PTR-MS. Respir Physiol Neurobiol 145:295–300

    Article  CAS  PubMed  Google Scholar 

  3. Phillips M, Gleeson K, Hughes JM et al (1999) Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study. Lancet 353:1930–1933

    Article  CAS  PubMed  Google Scholar 

  4. Phillips M, Altorki N, Austin JHM et al (2007) Prediction of lung cancer using volatile biomarkers in breath. Cancer Biomark 3:95–109

    Article  CAS  PubMed  Google Scholar 

  5. Poli D, Carbognani P, Corrdai M et al (2005) Exhaled volatile organic compounds in patients with non-small cell lung cancer: cross sectional and nested short-term follow-up study. Respir Res 6:71

    Article  PubMed  PubMed Central  Google Scholar 

  6. Song G, Qin T, Liu H et al (2010) Quantitative breath analysis of volatile organic compounds of lung cancer patients. Lung Cancer 67:227–231

    Article  PubMed  Google Scholar 

  7. Dragonieri S, Schot R, Mertens JA et al (2007) An electronic nose in the discrimination of patients with asthma and controls. J Allergy Clin Immunol 120:856–862

    Article  PubMed  Google Scholar 

  8. Montuschi P, Santonico M, Penazza G et al (2010) Diagnostic performance of an electronic nose, fractional exhaled nitric oxide and lung function testing in asthma. Chest 137:790–796

    Article  CAS  PubMed  Google Scholar 

  9. Bennet L, Ciaffoni L, Denzer W et al (2009) A chemometric study on human breath mass spectra for biomarker identification in cystic fibrosis. J Breath Res 3:046002

    Article  Google Scholar 

  10. Van Berkel JJ, Dallinga JW, Moller GM et al (2010) A profile of volatile organic compounds in breath discriminates COPD patients from controls. Respir Med 104:557–563

    Article  PubMed  Google Scholar 

  11. Persaud K, Dodd G (1982) Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 299:352

    Article  CAS  PubMed  Google Scholar 

  12. Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187

    Article  CAS  PubMed  Google Scholar 

  13. Röck F, Barsan N, Weimar U (2008) Electronic nose: current status and future trends. Chem Rev 108:705–725

    Article  PubMed  Google Scholar 

  14. Wilson AD, Baietto M (2011). Advances in electronic-nose technologies developed for biomedical applications. Sensors 11:1105–1176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Broadhurst DI, Kjell DB (2006) Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2:171–196

    Article  CAS  Google Scholar 

  16. Fens N, Zwinderman AH, van der Schee MP et al (2009) Exhaled breath profiling enables discrimination of chronic obstructive pulmonary disease and asthma. Am J Respir Crit Care Med 180:1076–1082

    Article  CAS  PubMed  Google Scholar 

  17. Fens N, Roldaan AC, van der Schee MP et al (2011) External validation of exhaled breath profiling using an electronic nose in the discrimination of asthma with fixed airways obstruction and chronic obstructive pulmonary disease. Clin Exp Allergy 41:1371–1378

    Article  CAS  PubMed  Google Scholar 

  18. Wagener A, Brinkman P, Zwinderman A, et al (2013). Exhaled breath profiling and eosinophilic airway inflammation in asthma—results of a pilot study. Am J Respir Crit Care Med. 187:A2392

    Google Scholar 

  19. Plaza V, Crespo A, Giner J et al (2015) Inflammatory asthma phenotype discrimination using an electronic nose breath analyzer. J Investig Allergol Clin Immunol 25:431–437

    CAS  PubMed  Google Scholar 

  20. van der Schee MP, Palmay R, Cowan JO et al (2013) Predicting steroid responsiveness in patients with asthma using exhaled breath profiling. Clin Exp Allergy 43:1217–1225

    Article  PubMed  Google Scholar 

  21. de Vries R, Brinkman P, van der Schee MP et al (2015) Integration of electronic nose technology with spirometry: validation of a new approach for exhaled breath analysis. J Breath Res 9:046001

    Article  PubMed  Google Scholar 

  22. Cosio MG, Saetta M, Agusti A (2009) Immunologic aspects of chronic obstructive pulmonary disease. N Engl J Med 360:2445–2454

    Article  CAS  PubMed  Google Scholar 

  23. Sibila O, Garcia-Bellmunt L, Giner J et al (2014) Identification of airway bacterial colonization by an electronic nose in chronic obstructive pulmonary disease. Respir Med 108:1608–1614

    Article  PubMed  Google Scholar 

  24. Hattesohl AD, Jörres RA, Dressel H et al (2011) Discrimination between COPD patients with and without alpha 1-antitrypsin deficiency using an electronic nose. Respirology 16:1258–1264

    Article  PubMed  Google Scholar 

  25. Dragonieri S, Annema JT, Schot R et al (2009) An electronic nose in the discrimination of patients with lung cancer and COPD. Lung Cancer 64:166–170

    Article  PubMed  Google Scholar 

  26. Fens N, de Nijs SB, Peters S et al (2011) Exhaled air molecular profiling in relation to inflammatory subtype and activity in COPD. Eur Respir J 38:1301–1309

    Article  CAS  PubMed  Google Scholar 

  27. Fens N, van Rossum AG, Zanen P et al (2013) Subphenotypes of mild-to-moderate COPD by factor and cluster analysis of pulmonary function, CT imaging and breathomics in a population-based survey. COPD 10:277–285

    Article  PubMed  Google Scholar 

  28. Shafiek H, Fiorentino F, Merino JL et al (2015) Using the electronic nose to identify airway infection during COPD exacerbations. PLoS ONE 10:e0135199

    Article  PubMed  PubMed Central  Google Scholar 

  29. van Geffen WH, Bruins M, Kerstjens HA (2016) Diagnosing viral and bacterial respiratory infections in acute COPD exacerbations by an electronic nose: a pilot study. J Breath Res 10:036001

    Article  PubMed  Google Scholar 

  30. Marciniuk DD, Hernandez P, Balter M et al (2012) Alpha-1 antitrypsin deficiency targeted testing and augmentation therapy: a Canadian Thoracic Society clinical practice guideline. Can Respir J 19:109–116

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pavlou A, Turner AP, Magan N (2002) Recognition of anaerobic bacterial isolates in vitro using electronic nose technology. Lett Appl Microbiol 35:366–369

    Article  CAS  PubMed  Google Scholar 

  32. Pavlou AK, Magan N, Jones JM et al (2004) Detection of Mycobacterium tuberculosis (TB) in vitro and in situ using an electronic nose in combination with a neural network system. Biosens Bioelectron 20:538–544

    Article  CAS  PubMed  Google Scholar 

  33. Lai SY, Deffenderfer OF, Hanson W et al (2002) Identification of upper respiratory bacterial pathogens with the electronic nose. Laryngoscope 112:975–979

    Article  PubMed  Google Scholar 

  34. Dutta R, Hines EL, Gardner JW et al (2002) Bacteria classification using Cyranose 320 electronic nose. Biomed Eng Online 16:1–4

    CAS  Google Scholar 

  35. van der Schee MP, Fens N, Buijze H et al (2012) Diagnostic value of exhaled breath analysis in tuberculosis. Am J Respir Crit Care Med 185:a6510

    Google Scholar 

  36. Nakhleh MK, Jeries R, Gharra A et al (2014) Detecting active pulmonary tuberculosis with a breath test using nanomaterial-based sensors. Eur Respir J 43:1522–1525

    Article  PubMed  Google Scholar 

  37. Thaler ER, Hanson CW (2005). Medical applications of electronic nose technology. Exert Rev Med Devices 2:559–566

    Article  Google Scholar 

  38. Hanson CW, Thaler ER (2005) Electronic nose prediction of a clinical pneumonia score: biosensors and microbes. Anesthesiology 102:63–68

    Article  PubMed  Google Scholar 

  39. Hockstein NG, Thaler ER, Torigian D et al (2004) Diagnosis of pneumonia with an electronic nose: correlation of vapor signature with chest computed tomography scan findings. Laryngoscope 114:1701–1705

    Article  PubMed  Google Scholar 

  40. Bos LD, Martin-Loeches I, Kastelijn JB et al (2014) The volatile metabolic fingerprint of ventilator-associated pneumonia. Intensive Care Med 40:761–762

    Article  PubMed  Google Scholar 

  41. Schnabel RM, Boumans ML, Smolinska A et al (2015) Electronic nose analysis of exhaled breath to diagnose ventilator-associated pneumonia. Respir Med 109:1454–1459

    Article  CAS  PubMed  Google Scholar 

  42. de Heer K, Kok MG, Fens N et al (2016) Detection of airway colonization by Aspergillus fumigatus by use of electronic nose technology in patients with cystic fibrosis. J Clin Microbiol 54:569–575

    Article  PubMed  PubMed Central  Google Scholar 

  43. de Heer K, van der Schee MP, Zwinderman K et al (2013) Electronic nose technology for detection of invasive pulmonary aspergillosis in prolonged chemotherapy-induced neutropenia: a proof-of-principle study. J Clin Microbiol 5:1490–1495

    Article  Google Scholar 

  44. Di Natale C, Macagnano A, Martinelli E et al (2003) Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensors. Biosens Bioelectron 18:1209–1218

    Article  CAS  PubMed  Google Scholar 

  45. Santonico M, Lucantoni G, Pennazza G et al (2012) In situ detection of lung cancer volatile fingerprints using bronchoscopic air-sampling. Lung Cancer 77:46–50

    Article  CAS  PubMed  Google Scholar 

  46. D’Amico A, Pennazza G, Santonico M et al (2010) An investigation on electronic nose diagnosis of lung cancer. Lung Cancer 68:170–176

    Article  PubMed  Google Scholar 

  47. Gasparri R, Santonico M, Valentini C et al (2016) Volatile signature for the early diagnosis of lung cancer. J Breath Res 10:016007

    Article  PubMed  Google Scholar 

  48. Mazzone PJ, Hammel J, Dweik R et al (2007) Diagnosis of lung cancer by the analysis of exhaled breath with a colorimetric sensor array. Thorax 62:565–568

    Article  PubMed  PubMed Central  Google Scholar 

  49. Machado RF, Laskowski O, Deffenderfer O et al (2005) Detection of lung cancer by sensor array analysis of exhaled breath. Am J Respir Crit Care Med 171:1286–1291

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bikov A, Hernadi M, Korosi BZ et al (2014) Expiratory flow rate, breath hold and anatomic dead space influence electronic nose ability to detect lung cancer. BMC Pulm Med 14:202

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hubers AJ, Brinkman P, Boksem RJ et al (2014) Combined sputum hypermethylation and eNose analysis for lung cancer diagnosis. J Clin Pathol 67:707–711

    Article  PubMed  Google Scholar 

  52. Chen X, Cao M, Hao Y et al (2005) A Non-invasive detection of lung cancer combined virtual gas sensors array with imaging recognition technique. Conf Proc IEEE Eng Med Biol Soc 6:5873–5876

    PubMed  Google Scholar 

  53. Peng G, Tisch U, Adams O et al (2009) Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nanotechnol 4:669–673

    Article  CAS  PubMed  Google Scholar 

  54. Broza YY, Kremer R, Tisch U et al (2013) A nanomaterial-based breath test for short-term follow-up after lung tumor resection. Nanomedicine 9:15–21

    Article  CAS  PubMed  Google Scholar 

  55. Dragonieri S, van der Schee MP, Massaro T et al (2012) An electronic nose distinguishes exhaled breath of patients with malignant pleural mesothelioma from controls. Lung Cancer 75:326–331

    Article  PubMed  Google Scholar 

  56. Chapman EA, Thomas PS, Stone E et al (2012) A breath test for malignant mesothelioma using an electronic nose. Eur Resp J 40:448–454

    Article  Google Scholar 

  57. Greulich T, Hattesohl A, Grabisch A et al (2013) Detection of obstructive sleep apnoea by an electronic nose. Eur Respir J 42:145–155

    Article  PubMed  Google Scholar 

  58. Benedek P, Lázár Z, Bikov A et al (2013) Exhaled biomarker pattern is altered in children with obstructive sleep apnoea syndrome. Int J Pediatr Otorhinolaryngol 77:1244–1247

    Article  PubMed  Google Scholar 

  59. Kunos L, Bikov A, Lazar Z et al (2015) Evening and morning exhaled volatile compound patterns are different in obstructive sleep apnoea assessed with electronic nose. Sleep Breath 19:247–253

    Article  PubMed  Google Scholar 

  60. Dragonieri S, Porcelli F, Longobardi F et al (2015) An electronic nose in the discrimination of obese patients with and without obstructive sleep apnoea. J Breath Res 9:026005

    Article  PubMed  Google Scholar 

  61. Dragonieri S, Quaranta V, Carratu P et al (2016) Exhaled breath profiling in patients with COPD and OSA overlap syndrome: a pilot study. J Breath Res 3(10):041001

    Article  Google Scholar 

  62. Antonelli Incalzi R, Pennazza G, Scarlata S et al (2015) Comorbidity modulates non invasive ventilation-induced changes in breath print of obstructive sleep apnea syndrome patients. Sleep Breath 19:623–630

    Article  PubMed  Google Scholar 

  63. Paff T, van der Schee MP, Daniels JM et al (2013) Exhaled molecular profiles in the assessment of cystic fibrosis and primary ciliary dyskinesia. J Cyst Fibros 12:454–460

    Article  CAS  PubMed  Google Scholar 

  64. Joensen O, Paff T, Haarman EG et al (2014) Exhaled breath analysis using electronic nose in cystic fibrosis and primary ciliary dyskinesia patients with chronic pulmonary infections. PLoS ONE 9:e115584

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kovacs D, Bikov A, Losonczy G et al (2013) Follow up of lung transplant recipients using an electronic nose. J Breath Res 7:017117

    Article  PubMed  Google Scholar 

  66. Fens N, Douma RA, Sterk PJ et al (2010) Breathomics as a diagnostic tool for pulmonary embolism. J Thromb Haemost 8:2831–2833

    Article  CAS  PubMed  Google Scholar 

  67. Cohen-Kaminsky S, Nakhleh M, Perros F et al (2013) A proof of concept for the detection and classification of pulmonary arterial hypertension through breath analysis with a sensor array. Am J Respir Crit Care Med 188:756–759

    Article  PubMed  Google Scholar 

  68. Dragonieri S, Brinkman P, Mouw E et al (2013) An electronic nose discriminates exhaled breath of patients with untreated pulmonary sarcoidosis from controls. Respir Med 107:1073–1078

    Article  PubMed  Google Scholar 

  69. Bos LD, Schultz MJ, Sterk PJ (2014) Exhaled breath profiling for diagnosing acute respiratory distress syndrome. BMC Pulm Med 14:72

    Article  PubMed  PubMed Central  Google Scholar 

  70. van der Schee MP, Paff T, Brinkman P et al (2015) Breathomics in lung disease. Chest 147:224–231

    Article  PubMed  Google Scholar 

  71. Bikov A, Lázár Z, Horvath I (2015) Established methodological issues in electronic nose research: how far are we from using these instruments in clinical settings of breath analysis? J Breath Res 9:034001

    Article  PubMed  Google Scholar 

  72. Scarlata S, Pennazza G, Santonico M et al (2015) Exhaled breath analysis by electronic nose in respiratory diseases. Expert Rev Mol Diagn 15:933–956

    Article  CAS  PubMed  Google Scholar 

  73. van der Schee MP, Fens N, Brinkman P et al (2013) Effect of transportation and storage using sorbent tubes of exhaled breath samples on diagnostic accuracy of electronic nose analysis. J Breath Res 7:016002

    Article  PubMed  Google Scholar 

  74. Incalzi RA, Pennazza G, Scarlata S et al (2012) Reproducibility and respiratory function correlates of exhaled breath fingerprint in chronic obstructive pulmonary disease. PLoS ONE 7:e45396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nake A, Dubreuil B, Raynaud C, et al (2005). Outdoor in situ monitoring of volatile emissions from wastewater treatment plants with two portable technologies of electronic noses. Sens Actuators 106:36–39

    Article  CAS  Google Scholar 

  76. Meka VV, Lutz BJ, Melker RJ et al (2007) Prototype of a breath-based analysis system for medication compliance monitoring. J Breath Res 1:026006

    Article  PubMed  Google Scholar 

  77. Lazar Z, Fens N, van der Maten J et al (2010) Electronic nose breathprints are independent of acute changes in airway caliber in asthma. Sensors (Basel) 10:9127–9138

    Article  CAS  Google Scholar 

  78. Dragonieri S, Quaranta VN, Carratu P et al (2016) Influence of age and gender on the profile of exhaled volatile organic compounds analyzed by an electronic nose. J Bras Pneumol 42:143–145

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bikov A, Lazar Z, Schandl K et al (2011) Exercise changes volatiles in exhaled breath assessed by an electronic nose. Acta Physiol Hung 98:321–328

    Article  CAS  PubMed  Google Scholar 

  80. Bikov A, Pako J, Kovacs D et al (2011) Exhaled breath volatile alterations in pregnancy assessed with electronic nose. Biomarkers 16:476–484

    Article  CAS  PubMed  Google Scholar 

  81. Kischkel S, Miekisch W, Sawacki A et al (2010) Breath biomarkers for lung cancer detection and assessment of smoking related effects-confounding variables, influence of normalization and statistical algorithms. Clin Chim Acta 411:1637–1644

    Article  CAS  PubMed  Google Scholar 

  82. Bossuyt PM, Reitsma JB, Bruns DE et al (2003) Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Ann Clin Biochem 40:357–363

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvano Dragonieri.

Ethics declarations

Conflict of interest

None.

Ethical Approval

All procedures performed in studies involving humans were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Informed Consent

An informed consent was signed by all the participants of the studies cited in the present review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dragonieri, S., Pennazza, G., Carratu, P. et al. Electronic Nose Technology in Respiratory Diseases. Lung 195, 157–165 (2017). https://doi.org/10.1007/s00408-017-9987-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-017-9987-3

Keywords

Navigation