Skip to main content
Log in

CO2 laser stapedotomy safety: influence of laser energy and time on bone-conduction hearing levels

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Total laser energy in CO2 stapedotomy depends on the laser settings and the amount of applications. It is unclear if the amount of total laser energy affects bone-conduction hearing thresholds and if possible effects are temporary or permanent. Alterations of bone-conduction hearing thresholds after single or multiple-shot CO2 laser stapedotomy were analyzed between 1 and 3 weeks and 1.5–6 months after primary (n = 501) or revision surgeries (n = 153) and correlated to time, laser energy, frequency, surgical technique, and pathology encountered in revision stapedotomy. In both time periods, most patients showed a lower bone-conduction threshold in the four-tone puretone average (PTA) at frequencies of 0.5, 1, 2, and 3 kHz that further improved over time. Between 1 and 3 weeks, the improvement was significant in subgroups with cumulative energies lower 1 J and successful one-shot technique or in revisions without laser application. The remaining subgroups with higher total energies showed significant improvements between 1.5 and 6 months. At 4 and 8 kHz, significant improvements were found during 1.5–6 months after primary and revision surgery independent of the used energy. Repeated CO2 laser applications showed no impairment in bone-conduction thresholds and can thus be considered as safe. In most patients, significant, yet unexplained, improvements in bone-conduction hearing thresholds were noticed in a time- and energy-related pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cook JA, Krishnan S et al (1995) Quantifying the Carhart effect in otosclerosis. Clin Otolaryngol 20:258–261

    Article  CAS  PubMed  Google Scholar 

  2. Perez R, de Almeida J, Nedzelski JM, Chen JM (2009) Variations in the “Carhart notch” and overclosure after laser-assisted stapedotomy in otosclerosis. Otol Neurotol 30:1033–1036

    Article  PubMed  Google Scholar 

  3. Sabbe A, Verhaert N, Joossen I, Lammens A, Debruyne F (2015) Otosclerosis: shift in bone conduction after stapedotomy. B-ENT 11:183–189

    CAS  PubMed  Google Scholar 

  4. McGee TM (1983) The argon laser in surgery for chronic ear disease and otosclerosis. Laryngoscope 93:1177–1182

    Article  CAS  PubMed  Google Scholar 

  5. Lesinski SG (1989) Lasers for otosclerosis. Laryngoscope 99(Suppl 46):1–24

    CAS  PubMed  Google Scholar 

  6. Lesinski SG (1990) Lasers for otosclerosis—which one if any and why. Lasers Surg Med 10:448–457

    Article  CAS  PubMed  Google Scholar 

  7. Horn KL, Gherini S, Griffin GM Jr (1990) Argon laser stapedectomy using an endo-otoprobe system. Otolaryngol Head Neck Surg 102:193–198

    Article  CAS  PubMed  Google Scholar 

  8. Jovanovic S, Schönfeld U (1995) Application of the CO2 laser in stapedotomy. Adv Oto-Rhino-Laryngol 49:95–100

    Article  CAS  Google Scholar 

  9. Shabana YK, Allam H, Pedersen CB (1999) Laser stapedotomy. J Laryngol Otol 113:413–416

    Article  CAS  PubMed  Google Scholar 

  10. Garin P, Van PK, Jamart J (2002) Hearing outcome following laser-assisted stapes surgery. J Otolaryngol 31:31–34

    Article  PubMed  Google Scholar 

  11. Jovanovic S, Schönfeld U, Scherer H (2004) CO2 laser stapedotomy with the “one-shot” technique—clinical results. Otolaryngol Head Neck Surg 131:750–757

    Article  CAS  PubMed  Google Scholar 

  12. Albers AE, Schönfeld U, Kandilakis K, Jovanovic S (2013) CO2 laser revision stapedotomy. Laryngoscope 123:1519–1526

    Article  PubMed  Google Scholar 

  13. Wegner I, Kamalski D, Tange A et al (2014) Laser versus conventional fenestration in stapedotomy for otosclerosis: a systematic review. Laryngoscope 124:1687–1693

    Article  PubMed  Google Scholar 

  14. Fang L, Lin H, Zhang TY, Tan J (2014) Laser versus non-laser stapedotomy in otosclerosis: a systematic review and meta-analysis. Auris Nasus Larynx 41:337–342

    Article  PubMed  Google Scholar 

  15. Vernick DM (1996) A comparison of the results of KTP and CO2 laser stapedotomy. Am J Otol 17:221–224

    CAS  PubMed  Google Scholar 

  16. Buchman CA, Fucci MJ, Roberson JB Jr, De La Cruz A (2000) Comparison of argon and CO2 laser stapedotomy in primary otosclerosis surgery. Am J Otolaryngol 21:227–230

    Article  CAS  PubMed  Google Scholar 

  17. Motta G, Moscillo L (2002) Functional results in stapedotomy with and without CO2 laser. ORL J Otorhinolaryngol Relat Spec 64:307–310

    Article  PubMed  Google Scholar 

  18. Marchese M, RaVaella M, Scorpecci A, Cianfrone F, Scorpecci A (2011) “One-shot” CO2 versus Er:YAG laser stapedotomy: is the outcome the same? Eur Arch Otorhinolaryngol 268:351–356

    Article  PubMed  Google Scholar 

  19. Sergi B, Scorpecci A, Parrilla C, Paludetti G (2010) Early hearing assessment after “one shot” CO2 laser stapedotomy: is it helpful to predict inner ear damage and the functional outcome? Otol Neurotol 31:1376–1380

    PubMed  Google Scholar 

  20. Kamalski D, Wegner I, Tange A et al (2014) Outcomes of different laser types in laser-assisted stapedotomy: a systematic review. Otol Neurotol 35:1046–1051

    Article  PubMed  Google Scholar 

  21. Jovanovic S, Anft D, Schönfeld U, Berghaus A, Scherer H (1999) Influence of CO2 laser application to the guinea-pig cochlea on compound action potentials. Am J Otol 20:166–173

    Article  CAS  PubMed  Google Scholar 

  22. Jovanovic S, Schönfeld U, Fischer R et al (1996) Thermal stress on the inner ear in laser stapedotomy. HNO 44:6–13

    CAS  PubMed  Google Scholar 

  23. Jovanovic S, Schönfeld U, Prapavat V et al (1996) Effects of continuous wave laser systems on stapes footplate. Lasers Surg Med 19:424–432

    Article  CAS  PubMed  Google Scholar 

  24. Kamalski D, Verdaasdonk R, de Boorder T, Vincent R, Versnel H, Grolman W (2014) Comparing mechanical effects and sound production of KTP, thulium, and CO2 laser in stapedotomy. Otol Neurotol 35:1156–1162

    PubMed  Google Scholar 

  25. Kamalski D, Peters J, de Boorder T, Klis S, Grolman W (2014) Influence of laser-assisted cochleostomy on acoustically evoked compound action potentials in the guinea pig. Otol Neurotol 35:1306–1311

    Article  PubMed  Google Scholar 

  26. Kamalski D, Verdaasdonk R, de Boorder T, Vincent R, Trabelzini F, Grolman W (2014) Comparison of KTP, thulium, and CO2 laser in stapedotomy using specialized visualization techniques: thermal effects. Eur Arch Otorhinolaryngol 271:1477–1483

    PubMed  Google Scholar 

  27. Moscillo L, Imperiali M, Carra P, Catapano F, Motta G (2006) Bone conduction variation poststapedotomy. Am J Otol 27:330–333

    Article  Google Scholar 

  28. Karimi Yazdi A, Sazgar A, Motiee M, Ashtiani M (2009) Improvement of bone conduction after stapes surgery in otosclerosis patients with mixed hearing loss depending from surgical technique. Eur Arch Otorhinolaryngol 266:1225–1228

    Article  PubMed  Google Scholar 

  29. Robinson M, Kasden SD (1977) Bone conduction speech discrimination: an indication of cochlear function in the immediate postoperative period. Arch Otolaryngol 103:238–240

    Article  CAS  PubMed  Google Scholar 

  30. Smyth GD (1978) Immediate and delayed alterations in cochlear function following stapedectomy. Otolaryngol Clin North Am 11:105–112

    CAS  PubMed  Google Scholar 

  31. Lesinski SG (2002) Causes of conductive hearing loss after stapedectomy or stapedotomy: a prospective study of 279 consecutive surgical revisions. Otol Neurotol 23:281–288

    Article  PubMed  Google Scholar 

  32. Lesinski SG (2003) Revision stapedectomy. Curr Opin Otolaryngol Head Neck Surg 11:347–354

    Article  PubMed  Google Scholar 

  33. Vincent R, Rovers M, Zingade N et al (2010) Revision stapedotomy: operative findings and hearing results. A prospective study of 652 cases from the otology–neurotology database. Otol Neurotol 31:875–882

    Article  PubMed  Google Scholar 

  34. Somers T, Vercruysse J-P, Zarowski A, Verstreken M, Offeciers E (2006) Stapedotomy with microdrill or carbon dioxide laser: influence on inner ear function. Ann Otol Rhinol Laryngol 115:880–885

    Article  PubMed  Google Scholar 

  35. Boonchoo R, Puapermpoonsiri P (2007) Early and late hearing outcomes after CO2 laser stapedotomy. J Med Assoc Thai 90:1647–1653

    PubMed  Google Scholar 

  36. St Bauchet. Martin M, Rubinstein EN, Hirsch BE (2008) High-frequency sensorineural hearing loss after stapedectomy. Otol Neurotol 29:447–452

    Article  Google Scholar 

  37. Just T (2012) Effect of the stapedotomy technique on early post-operative hearing results—preliminary results. Auris Nasus Larynx 39:383–386

    Article  PubMed  Google Scholar 

  38. Brase C, Keil I, Schwitulla J et al (2013) Bone conduction after stapes surgery: comparison of CO2 laser and manual perforation. Otol Neurotol 34:821–826

    Article  PubMed  Google Scholar 

  39. Sperling NM, Sury K, Gordon J, Cox S (2013) Early postoperative results in stapedectomy. Otolaryngol Head Neck Surg 149:918–923

    Article  PubMed  Google Scholar 

  40. Huber A, Linder T, Fisch U (2001) Is the Er: YAG laser damaging to inner ear function? Otol Neurotol 22:311–315

    Article  CAS  PubMed  Google Scholar 

  41. Galli J, Parrilla C, Fiorita A, Marchese MR, Paludetti G (2005) Erbium:yttrium–aluminum–garnet laser application in stapedotomy. Otolaryngol Head Neck Surg 133:923–928

    Article  PubMed  Google Scholar 

  42. Timoshenko AP, Oletski A, Prades JM et al (2009) A comparison of the hearing results of KTP and Erbium YAG laser stapedotomy. Acta Otolaryngol 129:217–219

    Article  CAS  PubMed  Google Scholar 

  43. Schrauwen I, Van Camp G (2010) The etiology of otosclerosis: a combination of genes and environment. Laryngoscope 120:1195–1202

    PubMed  Google Scholar 

  44. Stenfelt S, Goode RL (2005) Bone-conducted sound: physiological and clinical aspects. Otol Neurotol 26:1245–1261

    Article  PubMed  Google Scholar 

  45. Vincent R, Sperling NM, Oates J, Jindal M (2006) Surgical findings and long-term hearing results in 3,050 stapedotomies for primary otosclerosis: a prospective study with the otology–neurotology database. Otol Neurotol 27(8 Suppl 2):25–47

    Article  Google Scholar 

  46. Forton G, Wuyts F, Delsupehe K, Verfaillie J, Loncke R (2009) CO2 laser assisted stapedotomy combined with a Wengen titanium clip stapes prosthesis: superior short-term results. Otol Neurotol 30:1071–1078

    Article  PubMed  Google Scholar 

  47. Watson GJ, Byth K, da Cruz M (2015) Outcomes in stapedotomy surgery: the learning curve redefined. Otol Neurotol 36:1601–1603

    Article  PubMed  Google Scholar 

  48. Kwok P, Gleich O, Dalles K, Mayr E, Jacob P, Strutz J (2017) How to avoid a learning curve in stapedotomy: a standardized surgical technique. Otol Neurotol 38:931–937

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas E. Albers.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Ethical statement

The study has been approved by the ethical board of Charité-Universitätsmedzin Berlin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schönfeld, U., Weiming, H., Hofmann, V.M. et al. CO2 laser stapedotomy safety: influence of laser energy and time on bone-conduction hearing levels. Eur Arch Otorhinolaryngol 274, 4131–4139 (2017). https://doi.org/10.1007/s00405-017-4769-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-017-4769-3

Keywords

Navigation