Skip to main content

Advertisement

Log in

Rare compound heterozygosity involving dominant and recessive mutations of GJB2 gene in an assortative mating hearing impaired Indian family

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Connexin 26 (Cx-26), a gap junction protein coded by GJB2 gene, plays a very important role in recycling of potassium ions, one of the vital steps in the mechanotransduction process of hearing. Mutations in the GJB2 gene have been associated with both autosomal recessive as well as dominant nonsyndromic hearing loss. As Cx-26 is linked with skin homeostasis, mutations in this gene are sometimes associated with syndromic forms of hearing loss showing skin anomalies. We report here a non consanguineous assortatively mating hearing impaired family with one of the hearing impaired partners, their hearing impaired sibling and hearing impaired offspring showing compound heterozygosity in the GJB2 gene, involving a dominant mutation p.R184Q and two recessive mutations p.Q124X and c.IVS 1+1G>A in a unique triallelic combination. To the best of our knowledge, this is the first report from India on p.R184Q mutation in the GJB2 gene associated with rare compound heterozygosity showing nonsyndromic presentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hilgert N, Smith RJ, Van Camp G (2009) Forty-six genes causing nonsyndromic hearing impairment: which ones should be analyzed in DNA diagnostics. Mutat Res 681:189–196

    Article  CAS  PubMed  Google Scholar 

  2. Mehl AL, Thomson V (1998) Newborn hearing screening: the great omission. Pediatrics 101(E1):1–6

    Google Scholar 

  3. Morton CC, Nance WE (2006) Newborn hearing screening—a silent revolution. N Engl J Med. 354:2151–2164

    Article  CAS  PubMed  Google Scholar 

  4. Marazita ML, Ploughman LM, Rawlings B, Remington E, Arnos KS, Nance WE (1993) Genetic epidemiological studies of early-onset deafness in the US school-age population. Am J Med Genet 46:486–491

    Article  CAS  PubMed  Google Scholar 

  5. Toriello HV, Reardon W, Gorlin RJ (2004) Hereditary hearing loss and its syndromes. Oxford University Press, New York

    Google Scholar 

  6. Smith RJ, Bale JF Jr, White KR (2005) Sensorineural hearing loss in children. Lancet 365:879–890

    Article  PubMed  Google Scholar 

  7. Kenneson A, Van Naarden BK, Boyle C (2002) GJB2 (connexin 26) variants and nonsyndromic sensorineural hearing loss: a HuGE review. Genet Med. 4:258–274

    Article  CAS  PubMed  Google Scholar 

  8. Snoeckx RL et al (2005) GJB2 mutations and degree of hearing loss: a multicenter study. Am J Hum Genet 77:945–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yum SW, Zhang J, Scherer SS (2010) Dominant connexin26 mutants associated with human hearing loss have trans-dominant effects on connexin30. Neurobiol Dis 38(2):226–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Richard G, Rouan F, Willoughby CE, Brown N, Chung P, Ryynänen M et al (2002) Missense mutations in GJB2 encoding connexin-26 cause the ectodermal dysplasia keratitis- ichthyosis-deafness syndrome. Am J Hum Genet 70:1341–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Martin PEM, Evans HW (2004) Incorporation of connexins into plasma membranes and gap junctions. Cardiovasc Res 62:378–387

    Article  CAS  PubMed  Google Scholar 

  12. Hamelmann C, Amedofu GK, Albrecht K, Muntau B, Gelhaus A, Brobby GW et al (2001) Pattern of connexin 26 (GJB2) mutations causing sensorineural hearing impairment in Ghana. Hum Mutat 18:84–85

    Article  CAS  PubMed  Google Scholar 

  13. Pavithra A, Selvakumari M, Nityaa V, Sharanya N, Ramakrishnan R, Narasimhan M et al (2015) Autosomal dominant hearing loss resulting from p.R75Q mutation in the GJB2 gene: nonsyndromic presentation in a South Indian family. Ann Hum Genet 79(1):76–82

    Article  CAS  PubMed  Google Scholar 

  14. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  15. RamShankar M, Girirajan S, Dagan O, Ravi Shankar HM, Jalvi R, Rangasayee R et al (2003) Contribution of connexin26 (GJB2) mutations and founder effect to non-syndromic hearing loss in India. J Med Genet 40:e68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. del Castillo FJ, Rodríguez-Ballesteros M, Álvarez A et al (2005) A novel deletion involving the connexin-30 gene, del(GJB6-d13s1854), found in trans with mutations in the GJB2 gene (connexin-26) in subjects with DFNB1 non-syndromic hearing impairment. J Med Genet 42:588–594

    Article  PubMed  PubMed Central  Google Scholar 

  17. Del Castillo I, Villamar M, Moreno-Pelayo MA, del Castillo FJ, Alvarez A, Telleria D et al (2002) A deletion involving the connexin 30 gene in nonsyndromic hearing impairment. N Engl J Med 346:243–249

    Article  PubMed  Google Scholar 

  18. Su CC, Li SY, Su MC, Chen WC, Yang JJ (2010) Mutation R184Q of connexin 26 in hearing loss patients has a dominant-negative effect on connexin 26 and connexin 30. Eur J Hum Genet 18:1061–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Welch KO, Marin RS, Pandya A, Arnos KS (2007) Compound heterozygosity for dominant and recessive GJB2 mutations: effect on phenotype and review of the literature. Am J Med Genet 143A:1567–1573

    Article  CAS  PubMed  Google Scholar 

  20. Titeux M, Mendonça V, Decha A, Moreira E, Magina S, Maia A et al (2009) Keratitis–ichthyosis–deafness syndrome caused by GJB2 maternal mosaicism. J Investig Dermatol 129:776–779

    Article  CAS  PubMed  Google Scholar 

  21. Sbidian E, Feldmann D, Bengoa J, Fraitag S, Abadie V, de Prost Y et al (2010) Germline mosaicism in keratitis–ichthyosis–deafness syndrome: pre-natal diagnosis in a familial lethal form. Clin Genet 77(6):587–592

    Article  CAS  PubMed  Google Scholar 

  22. Rouan F, White TW, Brown N, Taylor AM, Lucke TW, Paul DL et al (2001) Trans-dominant inhibition of connexin-43 by mutant connexin-26: implications for dominant connexin disorders affecting epidermal differentiation. J Cell Sci 114:2105–2113

    CAS  PubMed  Google Scholar 

  23. Wang YC et al (2002) Mutations of Cx26 gene (GJB2) for prelingual deafness in Taiwan. Eur J Hum Genet 10:495–498

    Article  PubMed  Google Scholar 

  24. Yang JJ et al (2007) Identification of mutations in members of the connexin gene family as a cause of nonsyndromic deafness in Taiwan. Audiol Neuro otol 12:198–208

    Article  CAS  Google Scholar 

  25. Yaeger D et al (2006) Outcomes of clinical examination and genetic testing of 500 individuals with hearing loss evaluated through a genetics of hearing loss. Clin Am J Med Genet 140A:827–836

    Article  CAS  Google Scholar 

  26. Mahdieh N et al (2010) Unexpected heterogeneity due to recessive and de novo dominant mutations of GJB2 in an Iranian family with nonsyndromic hearing loss: implication for genetic counseling. Biochem Biophys Res Commun 402:305–307

    Article  CAS  PubMed  Google Scholar 

  27. Huang S et al (2011) De novo dominant mutation of GJB2 in two Chinese families with nonsyndromic hearing loss. Int J Pediatr Otorhinolaryngol 75:1333–1336

    Article  PubMed  Google Scholar 

  28. Weegerink NJ et al (2011) Phenotypes of two Dutch DFNA3 families with mutations in GJB2. Ann Otol Rhinol Laryngol 120:191–197

    Article  PubMed  Google Scholar 

  29. de la Luz Arenas-Sordo M et al (2012) Unique spectrum of GJB2 mutations in Mexico. Int J Pediatr Otorhinolaryngol 76:1678–1680

    Article  PubMed  Google Scholar 

  30. Minarik G et al (2012) Prevalence of DFNB1 mutations in Slovak patients with non-syndromic hearing loss. Int J Pediatr Otorhinolaryngol 76:400–403

    Article  PubMed  Google Scholar 

  31. Pang X et al (2014) Characterization of spectrum, de novo rate and genotype–phenotype correlation of dominant GJB2 mutations in Chinese hans. PLoS One 9:e100483

    Article  PubMed  PubMed Central  Google Scholar 

  32. Loffler J et al (2001) Sensorineural hearing loss and the incidence of Cx26 mutations in Austria. Eur J Hum Genet 9:226–230

    Article  CAS  PubMed  Google Scholar 

  33. Bonyadi M et al (2009) Mutation analysis of familial GJB2-related deafness in Iranian Azeri Turkish patients. Genet Test Mol Biomark 13:689–692

    Article  CAS  Google Scholar 

  34. Riahi Z et al (2013) Compound heterozygosity for dominant and recessive GJB2 mutations in a Tunisian family and association with successful cochlear implant outcome. Int J Pediatr Otorhinolaryngol 77:1481–1484

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the family for their cooperation and participation in this study. This study was supported by the Ad hoc Research Project of the Indian Council of Medical Research (ICMR), Government of India, to C. R. Srikumari Srisailapathy and the Special Assistance Program-DRS II of University Grants Commission (UGC) to the Department of Genetics. A. Pavithra was a Senior Research Fellow of the ICMR Ad hoc Research project. J. Chandru was supported by a Senior Research Fellowship from UGC for Basic Scientific Research. J. M. Jeffrey was a Research Fellow of UGC-UPE-II-Biomedical Research Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. R. Srikumari Srisailapathy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavithra, A., Chandru, J., Jeffrey, J.M. et al. Rare compound heterozygosity involving dominant and recessive mutations of GJB2 gene in an assortative mating hearing impaired Indian family. Eur Arch Otorhinolaryngol 274, 119–125 (2017). https://doi.org/10.1007/s00405-016-4229-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-016-4229-5

Keywords

Navigation