Skip to main content

Advertisement

Log in

Relationships among maternal nutrient intake and placental biomarkers during the 1st trimester in low-income women

Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

Pre-eclampsia is a multi-system disorder caused by inadequate placentation in early pregnancy; however, little is known about the influence of nutrient intake on placental development during the crucial 1st trimester. The objective of this study was to examine the relationships between nutrient intake and the raw values and ratios of angiogenic [placental growth factor (PlGF)] and antiangiogenic [soluble fms-like tyrosine kinase-1 (sFlt-1) and soluble endoglin (sEng)] placental biomarkers in the 1st trimester.

Methods

A cross-sectional study of low-income, pregnant women (n = 118). Average nutrient intake was calculated from three 24-h dietary recalls. Biomarker values were adjusted for gestational age and nutrients were adjusted for energy.

Results

The angiogenic to antiangiogenic ratio [PlGF/(sFlt-1 × sEng)] was positively related to intake of vitamin D (r = 0.24), vitamin B2 (r = 0.25), B12 (r = 0.20), dietary folate equivalents (r = 0.19), iron (r = 0.19), and zinc (r = 0.19) and negatively related to transfats (r = −0.24). Principal component analysis revealed that a vitamin/mineral factor [t (112) = 2.58, p = 0.011] and transfats factor [t (112) = −2.03, p = 0.045] were significant predictors of the PlGF/(sFlt-1 × sEng) ratio. The vitamin and mineral factor was a significant predictor of sFlt-1 [t (122) = 2.29, p = 0.024].

Conclusions

Expression of placental biomarkers in the early weeks of pregnancy may be influenced by intake of nutrients. Understanding the influence of maternal nutrient intake and placental development in the 1st trimester may provide the opportunity to avert the development or blunt the severity of preeclampsia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Funai E, Friedlander Y, Paltiel O, Tiram E, Xue X, Dutsch L, Harlap S (2005) Long-term mortality after preeclampsia. Epidemiology 16:206–215

    Article  PubMed  Google Scholar 

  2. Magnussen E, Vatten L, Smithy G, Romundstad P (2009) Hypertensive disorders in pregnancy and subsequently measured cardiovascular risk factors. Obstet Gynecol 114:961–970

    Article  PubMed  Google Scholar 

  3. Rajakumar A, Michael H, Rajakumar P, Shibata E, Hubel C, Karumanchi S, Thadhani R, Wolf M, Harger G, Markovic N (2005) Extra-plancetal expression of vascular endothelial growth factor receptor-1 (sflt-1), and soluble Flt-1 (sFlt-1), by peripheral blood mononuclear cell (PBMCs) in normotensive and preeclamptic pregnant women. Placenta 26:563–573

    Article  PubMed  CAS  Google Scholar 

  4. Ziche M, Maglione D, Ribatti S, Morbidelli L, Lago C, Battisti M, Paoletti I, Barra A, Tucci M, Parise G, Vincenti V, Granger HJ, Viglietto G, Persico MG (1997) Placental growth factor-1 is chemotactic, mitogenic, and angiogenic. Lab Invest 76:517–531

    PubMed  CAS  Google Scholar 

  5. Levine R, Maynard W, Qian C, Lim K, England L, Yu K, Schisterman b, Epstein F, Sibai B, Sukhatme V, Karumanchi SA (2004) Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 350:672–683

    Article  PubMed  CAS  Google Scholar 

  6. Tjoa M, Levine R, Karumanchi A (2007) Angiogenic factors and preeclampsia. Front Biosci 12:2395–2402

    Article  PubMed  CAS  Google Scholar 

  7. Myatt L, Webster R (2008) Vascular biology of preeclampsia. J Thromb Haemost 7:375–384

    Article  Google Scholar 

  8. Ferrera N, Gerber H-P, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676

    Article  Google Scholar 

  9. Ahmad S, Ahmed A (2004) Elevated placental soluble vascular endothelial growth factor receptor-1 inhibits angiogenesis in preeclampsia. Circ Res 95:884–891

    Article  PubMed  CAS  Google Scholar 

  10. Levine R, Lam C, Qian C, Yu L, Maynard S, Sachs B, Sibai B, Epstein F, Romero R, Thadhani R, Karumanchi S (2006) Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med 355:992–1005

    Article  PubMed  CAS  Google Scholar 

  11. DeVivo A, Baviera G, Giordano D, Todarello G, Corrado F, D’Anna R (2008) Endoglin, PlGF, and sFlt-1 as markers for predicting preeclampsia. Acta Obstetricia et Gynecologica 87:837–842

    Article  CAS  Google Scholar 

  12. Tripathi R, Rath G, Ralhan R, Sazena S, Salhan S (2009) Soluble and membranous vascular endothelial growth factor receptor-2 in pregnancies complicated by pre-eclampsia. Yonsei Med J 50:656–666

    Article  PubMed  CAS  Google Scholar 

  13. Chaiworaponga T, Romero R, Cotsch F, Espinoza J, Nien J, Gonclaves L, Edwin S, Kim Y, Erez O, Kusanovic J, Pineles B, Papp Z, Hassan S (2008) Low maternal concentrations of soluble vascular endothelial growth factor receptor-2 in preeclampsia and small for gestational age. J Matern Fetal Neonatal Med 21:41–52

    Article  Google Scholar 

  14. Erez O, Romero R, Espinoza J, Fu W, Todem D, Kusanovic J, Cotsch F, Edwin S, Nien J, Chaiworapongsa T, Mittal P, Masaki-Tovi S, Than N, Gomez R, Hassan S (2008) The change in concentrations of angiogenic and anti-angiogenic factors in maternal plasma between the first and second trimesters in risk assessment for the subsequent development of preeclampsia and small for gestational age. J Matern Fetal Neonatal Med 21:279–287

    Article  PubMed  CAS  Google Scholar 

  15. Romero R, Nien J, Espinoza J, TOdem D, Fu W, Chung H, Kusanovic J, GOtsch F, Erez O, Mazaki-tovi S, Gomes R, Edwin S, Chaiworapongsa T, Levine R, Karumanchi A (2008) A longitudinal study of angiogenic (placental growth factor) and anti-angiogenic (soluble endoglin and soluble VEGR receptor-1) factors in normal pregnancy and patients destined to develop preeclampsia and deliver a small-for-gestational-age neonate. J Matern Fetal Neonatal Med 21:9–23

    Article  PubMed  CAS  Google Scholar 

  16. Rana S, Karumanchi S, Levine R, Venkatesha S, Rauh-Hain J, Tamez H, Thadhani R (2007) Sequential changes in antiangiogenic factors in early pregnancy and risk of developing preeclampsia. Hypertension 50:137–142

    Article  PubMed  CAS  Google Scholar 

  17. Vatten L, Eskild A, Nilsen T, Jeansson S, Jenum P, Staff A (2007) Changes in circulating level of angiogenic factors from the first to the second trimester as predictors of preeclampsia. Am J Obstet Gynecol 196(239):e1–e6

    PubMed  Google Scholar 

  18. Kusanovic J, Romero R, Chaiworapongsa T, Erez O, Mittal P, Vaisbuch E, Mazaki-Tovi S, Cotsch F, Edwin S, Gomez R, Yeo L, Conde-Agudelo A, Hassan S (2009) A prospective cohort study of the value of maternal plasma concentrations of angiogenic and anti-angiogenic factors in early pregnancy and midtrimester in the identification of patients destined to develop preeclampsia. J Matern Fetal Neonatal Med 22:1021–1038

    Article  PubMed  CAS  Google Scholar 

  19. Lim J, Kim S, Park S, Yang H, Kim M, Ruy H (2008) Effective prediction of preeclampsia by a combined ratio of angiogenesis-related factors. Obstet Gynecol 111:1403–1409

    Article  PubMed  CAS  Google Scholar 

  20. Fowles E, Murphey C, Ruiz RJ (2011) Exploring relationships among psychosocial status, dietary quality and measures of placental development during the 1st trimester in low-income women. Biol Res Nurs 13:70–79

    Article  PubMed  Google Scholar 

  21. Roberts J, Balk J, Bodnar L, Belizan J, Bergel E, Martinez A (2003) Nutrient involvement in preeclampsia. J Nutr 133:1684A–1692S

    Google Scholar 

  22. Scholl T, Leskiw M, Chen X, Sims M, Stein T (2005) Oxidative stress, diet and the etiology of preeclampsia. Am J Clin Nutr 81:1390–1396

    PubMed  CAS  Google Scholar 

  23. Fiore G, Capasso A (2008) Effects of vitamin E and C on placental oxidative stress: an in vitro evidence for the potential therapeutic or prophylactic treatment of preeclampsia. Med Chem 4:526–530

    Article  PubMed  CAS  Google Scholar 

  24. Haugen M, Brantsaeter A, Trogstad L, Alexander J, Roth C, Magnus P, Meltzer H (2009) Vitamin D supplementation and reduced risk of preeclampsia in nulliparous women. Epidemiology 20:720–726

    Article  PubMed  Google Scholar 

  25. Bhargava A (2004) Socio-economic and behavioral factors are predictors of food use in the National Food Stamp Program Survey. Br J Nutr 92:497–506

    Article  PubMed  CAS  Google Scholar 

  26. Fowles E (2002) Comparing pregnant women’s nutritional knowledge to their actual dietary intake. MCN Am J Matern Child Nurs 27:171–177

    Article  PubMed  Google Scholar 

  27. Matthews F, Neil H (1998) Nutrient intakes during pregnancy in a cohort of nulliparous women. J Hum Nutr Diet 11:151–161

    Article  Google Scholar 

  28. Suitor C, Gardner J, Feldstien M (1990) Characteristics of diet among a culturally diverse group of low-income pregnant women. J Hum Nutr Diet 90:543–550

    CAS  Google Scholar 

  29. Swenson A, Harnack L, Ross J (2001) Nutritional assessment of pregnant women enrolled in the Special Supplemental Program for Women, Infants, and Children (WIC). J Am Diet Assoc 101:903–908

    Article  Google Scholar 

  30. Turner R, Langkamp-Henken B, Littell R, Lukowksi M, Suarez M (2003) Comparing nutrient intake from food to the estimated average requirements shows middle- to upper-income pregnant women lack iron and possible magnesium. J Am Diet Assoc 103:461–466

    PubMed  Google Scholar 

  31. Wunderlich S, Hongu N, Courter A, Bendixen C (1996) Nutrient intake and nutritional status of low-income pregnant women. Top Clin Nutr 12:66–73

    Google Scholar 

  32. Brodsky D, Christou H (2004) Current concepts in intrauterine growth restriction. J Intensive Care Med 19:307–319

    Article  PubMed  Google Scholar 

  33. Kind K, Moore V, Davies M (2006) Diet around conception and during pregnancy: effects on fetal and neonatal outcomes. Reprod Biomed Online 12:532–541

    Article  PubMed  CAS  Google Scholar 

  34. Baschat A, Hecher K (2004) Fetal growth restriction due to placental disease. Semin Perinatol 28:67–80

    Article  PubMed  Google Scholar 

  35. Cross J, Mickelson L (2006) Nutritional influences on implantation and placental development. Nutr Rev 64(5, Part 2):S12–S18

    Article  PubMed  Google Scholar 

  36. Brown J, Murtaugh M, Jacobs D, Margellos H (2002) Variation in newborn size according to pregnancy weight change by trimester. Am J Clin Nutr 76:205–209

    PubMed  CAS  Google Scholar 

  37. Susser M, Stein Z (1994) Timing of prenatal nutrition: a reprise of the Dutch Famine Study. Nutr Rev 52:84–94

    Article  PubMed  CAS  Google Scholar 

  38. Relton C, Pearce M, Parker L (2005) The influence of erythrocyte folate and serum vitamin B12 status on birth weight. Br J Nutr 93:593–599

    Article  PubMed  CAS  Google Scholar 

  39. Barker D (1995) Fetal origins of coronary heart disease. Br Med J 311(6998):171–174

    Article  CAS  Google Scholar 

  40. Barker D (1999) Fetal origins of type 2 diabetes mellitus. Ann Intern Med 130:322–325

    PubMed  CAS  Google Scholar 

  41. Godfrey K, Barker D (2000) Fetal nutrition and adult disease. Am J Clin Nutr 71(Suppl. 1):1344S–1352S

    PubMed  CAS  Google Scholar 

  42. Eriksson J, Forsen T, Tuomilehto J, Osmond C, Barker D (2000) Fetal and childhood growth and hypertension in adult life. Hypertension 36:790–794

    PubMed  CAS  Google Scholar 

  43. McMillen I, Muhlhausler B, Duffield J, Yuen B (2004) Prenatal programming of postnatal obesity: Fetal nutrition and the regulation of leptin synthesis and secretion before birth. Proc Nutr Soc 63:405–412

    Article  PubMed  CAS  Google Scholar 

  44. Wild S, Byrne C (2004) Evidence for fetal programming of obesity with a focus on putative mechanisms. Nutr Res Rev 17:153–162

    Article  PubMed  Google Scholar 

  45. Stevens J (2002) Applied multivariate statistics for the social sciences, 4th edn. Psychology Press, New York

    Google Scholar 

  46. Fox J (2008) Applied regression analysis and generalized linear models, 2nd edn. Sage, Newbury Park

    Google Scholar 

  47. Schlaeppi JM, Gutzwiller S, Finkenzeller G, Fournier B (1997) 1,25-dihydroxyvitamin D3 induces the expression of vascular endothelial growth factor in osteoblastic cells. Endocr Res 23:213–229

    Article  PubMed  CAS  Google Scholar 

  48. Wang DS, Miura M, Demura H, Sato K (1997) Anabolic effects of 1,25-dihydroxyvitamin D3 on osteoblasts are enhanced by vascular endothelial growth factor produced by osteoblasts and by growth factors produced by endothelial cells.Endocrinology 138:2953–2962

    Article  PubMed  CAS  Google Scholar 

  49. Cardus A, Panizo S, Encinas M, Dolcet X, Gallego C, Aldea M, Fernandez E, Valdivielso JM (2009) 1,25-dihydroxyvitamin D3 regulates VEGF production through a vitamin D response element in the VEGF promoter. Atherosclerosis 204:85–89

    Article  PubMed  CAS  Google Scholar 

  50. Cardús A, Parisi E, Gallego C, Aldea M, Fernández E, Valdivielso JM (2006) 1,25-Dihydroxyvitamin D3 stimulates vascular smooth muscle cell proliferation through a VEGF-mediated pathway. Kidney Int 69:1377–1384

    PubMed  Google Scholar 

  51. Gruber HE, Hoelscher G, Ingram JA, Chow Y, Loeffler B, Hanley EN Jr (2008) 1,25(OH)2-vitamin D3 inhibits proliferation and decreases production of monocyte chemoattractant protein-1, thrombopoietin, VEGF, and angiogenin by human annulus cells in vitro. Spine 33:755–765

    Article  PubMed  Google Scholar 

  52. Ben-Shoshan M, Amir S, Dang DT, Dang LH, Weisman Y, Mabjeesh NJ (2007) 1alpha,25-dihydroxyvitamin D3 (Calcitriol) inhibits hypoxia-inducible factor-1/vascular endothelial growth factor pathway in human cancer cells. Mol Cancer Ther 6:1433–1439

    Article  PubMed  CAS  Google Scholar 

  53. Levine MJ, Teegarden D (2004) 1alpha,25-dihydroxycholecalciferol increases the expression of vascular endothelial growth factor in C3H10T1/2 mouse embryo fibroblasts. J Nutr 134:2244–2250

    PubMed  CAS  Google Scholar 

  54. Kulkarni AV, Mehendale SS, Yadav HR, Joshi SR (2011) Reduced placental docosahexaenoic acid levels associated with increased levels of sFlt-1 in preeclampsia. Prostaglandins Leukot Essent Fatty Acids 84(1–2):51–55

    Article  PubMed  CAS  Google Scholar 

  55. Kulkarni AV, Mehendale SS, Yadav HR, Kilari AS, Taralekar VS, Joshi SR (2010) Circulating angiogenic factors and their association with birth outcomes in preeclampsia. Hypertens Res 33:561–567

    Article  PubMed  CAS  Google Scholar 

  56. Bhatia J (2005) Perinatal nutrition: optimizing infant health and development. Marcel Dekker, New York

    Google Scholar 

  57. Rasmussen K (2001) Is there a causal relationship between iron deficiency or iron-deficiency anemia and weight at birth, length of gestation and perinatal mortality? J Nutr 131:590S–603S

    PubMed  CAS  Google Scholar 

  58. Patil S, Kodiwadmath M, Kodiwadmath S (2008) Lipid peroxidation and antioxidant status in hypertensive pregnancies. Clin Exper Obstet Gynecol 35:272–274

    CAS  Google Scholar 

  59. Williams M, Woelk G, King I, Jenkins L, Mahomed K (2003) Plasma carotenoids, retinol, tocopherols, and lipoproteins in preeclamptic and normotensive pregnant Zimbabwean women. Am J Hypertens 16:665–672

    Article  PubMed  CAS  Google Scholar 

  60. Finch B (2003) Socioeconomic gradients and low birth-weight: empirical and policy considerations. Health Serv Res 38:1819–1842

    Article  PubMed  Google Scholar 

  61. Watts V, Rockett H, Baer H, Colditz G (2007) Assessing dietary quality in a population of low-income pregnant women: a comparison between Native American and Whites. Matern Child Health J 11:127–136

    Article  PubMed  Google Scholar 

  62. Rumbold A, Crowther C (2005) Vitamin E supplementation in pregnancy. Cochrane Datatabase Syst Rev 18(2):CD004069

    Google Scholar 

  63. Rumbold A, Crowther C (2005) Vitamin C supplementation in pregnancy. Cochrane Datatabase Syst Rev 18(2):CD004072

    Google Scholar 

Download references

Acknowledgments

Funding for this project was received from the National Institute of Nursing Research/National Institutes of Health, USA, [1R21NR010592-01A1: Predictors of Dietary Quality in Low-Income Pregnant Women].

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eileen R. Fowles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fowles, E.R., Walker, L.O., Marti, C.N. et al. Relationships among maternal nutrient intake and placental biomarkers during the 1st trimester in low-income women. Arch Gynecol Obstet 285, 891–899 (2012). https://doi.org/10.1007/s00404-011-2213-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-011-2213-2

Keywords

Navigation