Skip to main content
Log in

Evaluation of oxidative stress markers in first trimester for assessment of preeclampsia risk

Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Aim

The aim of this study is to determine the predictive values of oxidative stress markers and antioxidants in the development of preeclampsia between 10–14 and also at 20–24 weeks of gestation, after the completion of vascular transformation.

Materials and methods

Levels of oxidative stress parameters such as malondialdehyde (MDA), lipidhydroperoxide (LHP) and prostaglandin F (PGF), oxidized LDL (oxLDL), and antioxidant status parameters such as paraoxonase 1 (PON1), superoxide dismutase (SOD) and total antioxidant capacity (TAC) levels were measured and compared in 21 preeclamptic and 24 healthy pregnant women.

Results

In preeclamptic women, both between 10–14 and also at 20–24 weeks of gestation the levels of oxLDL, MDA and PGF were significantly higher (P < 0.001, P < 0.001, respectively), PON1, SOD and TAC were significantly lower (P < 0.01, P < 0.001, P < 0.05, respectively) compared to healthy pregnant women; yet there was no significant difference in LHP levels.

Conclusion

Increased levels of serum MDA and PGF, low levels of SOD and PON1 activity, in 10–14 GW may have been associated with preeclampsia etiology. High levels of MDA and PGF indicate that the oxidative damage is present well before the clinical symptoms occur. A panel of oxidative stress markers such as MDA and PGF in maternal blood can predict the development of preeclampsia long before clinical onset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Davison JM, Homuth V, Jeyabalan A et al (2004) New aspects in the pathophysiology of preeclampsia. J Am Soc Nephrol 15:2440–2448

    Article  PubMed  CAS  Google Scholar 

  2. Hubel CA, Roberts JM, Taylor RN, Musci TJ, Rogers GM, McLaughlin MK (1989) Lipid peroxidation in pregnancy: new perspectives on preeclampsia. Am J Obstet Gynecol 161:1025–1034

    PubMed  CAS  Google Scholar 

  3. Walsh SC (1994) Lipid peroxidation in pregnancy. Hypertens Pregn 13:1–25

    Article  CAS  Google Scholar 

  4. National high blood pressure education program working group on high pressure in pregnancy report of the national high blood pressure education program working group on high blood pressure in pregnancy. Am J Obstet Gynecol 2000; 183:1–22

    Google Scholar 

  5. Wir JJ (1996) Lipid peroxidation in preeclamptic and eclamptic pregnancies. Eur J Obstet Gynecol Repro Biol 64:51–54

    Article  Google Scholar 

  6. Myatt L, Cui X (2004) Oxidative stress in the placenta. Histochem Cell Biol 122:369–382

    Article  PubMed  CAS  Google Scholar 

  7. Anastasakis E, Papantoniou N, Daskalakis G, Mesogitis S, Antsaklis A (2008) Screening for pre-eclampsia by oxidative stress markers and uteroplacental blood flow. J Obstet Gynaecol 28:285–289

    Article  PubMed  CAS  Google Scholar 

  8. Rudra CB, Qiu C, David RM, Bralley JA, Walsh SW, Williams MA (2006) A prospective study of early-pregnancy plasma malondialdehyde concentration and risk of preeclampsia. Clin Biochem 39:722–726

    Article  PubMed  CAS  Google Scholar 

  9. Roberts JM, Taylor RN, Musci TJ, Rodgers GM et al (1989) Preeclampsia: an endothelial cell disorder. Am J Obstet Gynecol 161:1200–1204

    PubMed  CAS  Google Scholar 

  10. Davidge ST, Everson WV, Parisi VM, McLaughlin MK (1993) Pregnancy and lipid peroxide-induced alterations of eicosanoid-metabolizing enzymes in the aorta of the rat. Am J Obstet Gynecol 169:1338–1344

    PubMed  CAS  Google Scholar 

  11. Raijmakers MT, van Tits BJ, Hak-Lemmers HL, Roes EM, Steegers EA, Peters WH (2004) Low plasma levels of oxidized low density lipoprotein in preeclampsia. Acta Obstet Gynecol Scand 83:1173–1177

    PubMed  Google Scholar 

  12. Uzun H, Benian A, Madazli R, Topçuoğlu MA, Aydin S, Albayrak M (2005) Circulating oxidized low-density lipoprotein and paraoxonase activity in preeclampsia. Gynecol Obstet Invest 60:195–200

    Article  PubMed  CAS  Google Scholar 

  13. Sanchez SE, Williams MA, Muy-Rivera M, Qiu C, Vadachkoria S, Bazul V (2005) A case-control study of oxidized low density lipoproteins and preeclampsia risk. Gynecol Endocrinol 21:193–199

    Article  PubMed  CAS  Google Scholar 

  14. Behne D, Wolters SL (1979) Selenium content and glutahione peroxidase activity in plasma and erythrocytes of nonpregnant and pregnant women. J Clin Chem Clin Biochem 17:133–135

    PubMed  CAS  Google Scholar 

  15. Krishna Mohan S, Venkataramana G (2007) Status of lipid peroxidation, glutathione, ascorbic acid, vitamin E and antioxidant enzymes in patients with pregnancy–induced hypertension. Indian J Physiol Pharmacol 51:284–288

    PubMed  CAS  Google Scholar 

  16. Patil SB, Kodliwadmath MV, Kodliwadmath SM (2007) Role of lipid peroxidation and enzymatic antioxidants in pregnancy-induced hypertension. Clin Exp Obstet Gynecol 34:239–241

    PubMed  CAS  Google Scholar 

  17. Uotıla JT, Tuımala RJ, Aarnıo TM, Pyikkö KA, Ahotupa MO (1993) Findings on lipid peroxidation and antioxidant function in hypertensive complications of pregnancy. Br J Obstet Gynecol 100:270–276

    Article  Google Scholar 

  18. Llurba E, Gratacos E, Martin-Gallan P, Cabero L, Dominguez C (2004) A comprehensive study of oxidative stres and antioxidant status in preeclampsia and normal pregnancy. Free Radic Biol Med 37:557–570

    Article  PubMed  CAS  Google Scholar 

  19. Dordević NZ, Babić GM, Marković SD et al (2008) Oxidative stress and changes in antioxidative defense system in erythrocytes of preeclampsia in women. Reprod Toxicol 25:213–218

    Article  PubMed  Google Scholar 

  20. Aviram M, Rosenblat M, Scott B et al (1999) Human serum paraoxonase (PON 1) is inactivated by oxidized low density lipoprotein and preserved by antioxidants. Free Rad Biol Med 26:892–904

    Article  PubMed  CAS  Google Scholar 

  21. Moore RE, Navab M, Millar JS et al (2005) Increased atherosclerosis in mice lacking apolipoprotein A-I attributable to both impaired reverse cholesterol transport and increased inflammation. Circ Res 97:763–771

    Article  PubMed  CAS  Google Scholar 

  22. Jaichander P, Selvarajan K, Garelnabi M, Parthasarathy S (2008) Induction of paraoxonase 1 and apolipoprotein A-I gene expression by aspirin. J Lipid Res 49:2142–2148

    Article  PubMed  CAS  Google Scholar 

  23. Ferré N, Camps J, Fernández-Ballart J et al (2006) Longitudinal changes in serum paraoxonase-1 activity throughout normal pregnancy. Clin Chem Lab Med 44:880–882

    Article  PubMed  Google Scholar 

  24. Kim YJ, Park H, Lee HY et al (2007) Paraoxonase gene polymorphism, serum lipid, and oxidized low-density lipoprotein in preeclampsia. Eur J Obstet Gynecol Reprod Biol 133:47–52

    Article  PubMed  CAS  Google Scholar 

  25. Kumru S, Aydin S, Gursu MF, Ozcan Z (2004) Changes of serum paraoxonase (an HDL-cholesterol-associated lipophilic antioxidant) and arylesterase activities in severe preeclamptic women. Eur J Obstet Gynecol Reprod Biol 114:177–181

    Article  PubMed  CAS  Google Scholar 

  26. Sarandöl E, Safak O, Dirican M, Uncu G (2004) Oxidizability of apolipoprotein B-containing lipoproteins and serum paraoxonase/arylesterase activities in preeclampsia. Clin Biochem 37:990–996

    Article  PubMed  Google Scholar 

  27. Bayhan G, Koçyigit Y, Atamer A, Atamer Y, Akkus Z (2005) Potential atherogenic roles of lipids, lipoprotein(a) and lipid peroxidation in preeclampsia. Gynecol Endocrinol 21:1–6

    Article  PubMed  CAS  Google Scholar 

  28. Koçyigit Y, Atamer Y, Atamer A, Tuzcu A, Akkus Z (2004) Changes in serum levels of leptin, cytokines and lipoprotein in pre-eclamptic and normotensive pregnant women. Gynecol Endocrinol 19:267–273

    Article  PubMed  Google Scholar 

  29. Feingold KR, Memon RA, Moser AH, Grunfeld C (1998) Paraoxonase activity in the serum and hepatic mRNA levels decrease during the acute phase response. Atherosclerosis 139:307–315

    Article  PubMed  CAS  Google Scholar 

  30. LaMarca BD, Ryan MJ, Gilbert JS, Murphy SR, Granger JP (2007) Inflammatory cytokines in the pathophysiology of hypertension during preeclampsia. Curr Hypertens Rep 9:480–485

    Article  PubMed  CAS  Google Scholar 

  31. Cominacini L, Pasini AF, Garbin U et al (2000) Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-kappaB through an increased production of intracellular reactive oxygen species. J Biol Chem 275:12633–12638

    Article  PubMed  CAS  Google Scholar 

  32. Halvorsen B, Staff AC, Henriksen T, Sawamura T, Ranheim T (2001) 8-iso-prostaglandin F(2alpha) increases expression of LOX-1 in JAR cells. Hypertension 37:1184–1190

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by The Research Fund of Istanbul University (Project no: T-1403/20082007).

Conflict of interest

The authors declare that they have no conflict of interest related to the publication of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafize Uzun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Genc, H., Uzun, H., Benian, A. et al. Evaluation of oxidative stress markers in first trimester for assessment of preeclampsia risk. Arch Gynecol Obstet 284, 1367–1373 (2011). https://doi.org/10.1007/s00404-011-1865-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-011-1865-2

Keywords

Navigation