Skip to main content

Advertisement

Log in

Carboxyethyl aminobutyric acid (CEGABA) lacks cytotoxicity and genotoxicity and stimulates cell proliferation and migration in vitro

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Cosmeceuticals are cosmetics formulated using compounds with medical-like benefits. Though the antiaging effect of carboxyethyl aminobutyric acid (CEGABA) has been discussed, its action mechanism in cosmeceuticals remains unclear. This study assessed the in vitro efficacy and safety of CEGABA. NHI-3T3 mouse fibroblast cell line was treated with two CEGABA concentrations (50 and 500 μmol/L) for 24 h, 48 h, and 72 h. Cytotoxicity and genotoxicity were evaluated by colorimetry (MTT) and the alkaline version of the comet assay, respectively. Flow cytometry and the scratch-wound assay were used to assess cell-cycle phase distributions and cell migration rates. Compared with the untreated control, CEGABA increased cell growth 1.6 times after 72 h, independent of dose. The compound also decreased cell replication time by 4 h. These findings seem to be related with the approximately 1.5-times increase in phase S cells numbers. Importantly, in vitro wound healing improved roughly 20% after treatment with CEGABA for 24 h and persisted after 48 h, indicating culture recovery. The time-dependent proliferation and migration of fibroblasts induced by CEGABA besides the fact that the compound is neither genotoxic nor cytotoxic makes it an ideal candidate in the development of cosmeceuticals in antiaging therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. An JJ, Eum WS, Kwon HS, Koh JS, Lee SY, Baek JH, Cho YJ, Kim DW, Han KH, Park J, Jang SH, Choi SY (2013) Protective effects of skin permeable epidermal and fibroblast growth factor against ultraviolet-induced skin damage and human skin wrinkles. J Cosmet Dermatol 12:287–295. https://doi.org/10.1111/jocd.12067

    Article  PubMed  Google Scholar 

  2. Cerino A, de Amici M, Fussi F, Astaldi Ricotti GCB (1985) Carboxyethyl gamma-aminobutyric acid, a polyamine derivative molecule with a growth effect on hybridomas. J Immunol Methods 77:229–235

    Article  CAS  PubMed  Google Scholar 

  3. Cerino A, Bestagno M, Colonna M, Fussi F, Astaldi Ricotti GC (1988) Carboxyethyl gamma-aminobutyric acid, a polyamine derivative, improves the recovery of EBV-transformed lymphocytes. Biochem Biophys Res Commun 150:931–936. https://doi.org/10.1016/0006-291X(88)90718-8

    Article  CAS  PubMed  Google Scholar 

  4. Chin GS, Liu W, Peled Z, Lee TY, Steinbrech DS, Hsu M, Longaker MT (2001) Differential expression of transforming growth factor-beta receptors I and II and activation of Smad 3 in keloid fibroblasts. Plast Reconstr Surg 108:423–429

    Article  CAS  PubMed  Google Scholar 

  5. Collins AR (2014) Measuring oxidative damage to DNA and its repair with the comet assay. Biochim Biophys Acta 1840:794–800. https://doi.org/10.1016/j.bbagen.2013.04.022

    Article  CAS  PubMed  Google Scholar 

  6. Davis SC, Perez R (2009) Cosmeceuticals and natural products: wound healing. Clin Dermatol 27:502–506. https://doi.org/10.1016/j.clindermatol.2009.05.015

    Article  PubMed  Google Scholar 

  7. Duronio RJ, Xiong Y (2013) Signaling pathways that control cell proliferation. Cold Spring Harb Perspect Biol 5(3):a008904. https://doi.org/10.1101/cshperspect.a008904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fussi F, Savoldi F, Curti M (1987) Identification of N-carboxyethyl gamma-aminobutyric acid in bovine brain and human cerebrospinal fluid. Neurosci Lett 77:308–310. https://doi.org/10.1016/0304-3940(87)90518-0

    Article  CAS  PubMed  Google Scholar 

  9. Gallagher J, Gray M (2003) Is aloe vera effective for healing chronic wounds? J Wound Ostomy Cont Nurs 30:68–71. https://doi.org/10.1067/mjw.2003.16

    Article  Google Scholar 

  10. Gomes RK, Damazio MG (2009) Cosmetologia: descomplicando os princípios ativos, 3rd edn. Livraria Médica Paulista, São Paulo

    Google Scholar 

  11. Gunes S, Tamburaci S, Dalay MC, Deliloglu GI (2017) In vitro evaluation of Spirulina platensis extract incorporated skin cream with its wound healing and antioxidant activities. Pharm Biol 55:1824–1832. https://doi.org/10.1080/13880209.2017.1331249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hirsch HR, Engelberg J (1965) Determination of the cell doubling-time distribution from culture growth-rate data. J Theor Biol 9:297–302. https://doi.org/10.1016/0022-5193(65)90114-1

    Article  CAS  PubMed  Google Scholar 

  13. International Standard ISO 10993-5-ISO/EN10993-5 (2009) Biological evaluation of medical devices, part 5: tests for cytotoxicity in vitro methods, 3rd edn. ISO, Geneva

    Google Scholar 

  14. Jones SM, Kazlauskas A (2000) Connecting signaling and cell cycle progression in growth factor-stimulated cells. Oncogene 19:5558–5567. https://doi.org/10.1038/sj.onc.1203858

    Article  CAS  PubMed  Google Scholar 

  15. Kahan V, Ribeiro DA, Egydio F, Barros LA, Tomimori J, Tufik S, Andersen ML (2014) Is lack of sleep capable of inducing DNA damage in aged skin? Skin Pharmacol Physiol 27:127–131. https://doi.org/10.1159/000354915

    Article  CAS  PubMed  Google Scholar 

  16. Mao G, Goswami M, Kalen AL, Goswami PC, Sarsour EH (2016) N-acetyl-l-cysteine increases MnSOD activity and enhances the recruitment of quiescent human fibroblasts to the proliferation cycle during wound healing. Mol Biol Rep 43:31–39. https://doi.org/10.1007/s11033-015-3935-1

    Article  CAS  PubMed  Google Scholar 

  17. Mine S, Fortunel NO, Pageon H, Asselineau D (2008) Aging alters functionally human dermal papillary fibroblasts but not reticular fibroblasts: a new view of skin morphogenesis and aging. PLoS One 3:e4066. https://doi.org/10.1371/journal.pone.0004066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Minois N, Carmona-Gutierrez D, Madeo F (2011) Polyamines in aging and disease. Aging (Albany NY) 3:716–732. http://doi.org/10.18632/aging.100361

  19. Mohammadi M, Olsen SK, Ibrahimi OA (2005) Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev 16:107–137. https://doi.org/10.1016/j.cytogfr.2005.01.008

    Article  CAS  PubMed  Google Scholar 

  20. Moinard C, Cynober L, Bandt JP (2005) Polyamines: metabolism and implications in human diseases. Clin Nutr 24:184–197. https://doi.org/10.1016/j.clnu.2004.11.001

    Article  CAS  PubMed  Google Scholar 

  21. Montagner S, Costa A (2009) Molecular basis of photoaging. An Bras Dermatol 84:263–269. https://doi.org/10.1590/S0365-05962009000300008

    Article  PubMed  Google Scholar 

  22. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 16:55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  Google Scholar 

  23. Nadin SB, Vargas-Roig LM, Ciocca DR (2001) A silver staining method for single-cell gel assay. J Histochem Cytochem 49:1183–1186. https://doi.org/10.1177/002215540104900912

    Article  CAS  PubMed  Google Scholar 

  24. Nakamizo S, Egawa G, Doi H, Natsuaki Y, Miyachi Y, Kabashima K (2013) Topical treatment with basic fibroblast growth factor promotes wound healing and barrier recovery induced by skin abrasion. Skin Pharmacol Physiol 26:22–29. https://doi.org/10.1159/000343208

    Article  CAS  PubMed  Google Scholar 

  25. Naylor EC, Watson REB, Sherratt MJ (2011) Molecular aspects of skin ageing. Maturitas 69:249–256. https://doi.org/10.1016/j.maturitas.2011.04.011

    Article  CAS  PubMed  Google Scholar 

  26. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139:271–279

    Article  CAS  PubMed  Google Scholar 

  27. Oredsson SM (2003) Polyamine dependence of normal cell-cycle progression. Biochem Soc Trans 31:366–370. https://doi.org/10.1042/bst0310366

    Article  CAS  PubMed  Google Scholar 

  28. Oricha BS (2010) Cosmeceuticals: a review. Afr J Pharm Pharmacol 4:127–129

    CAS  Google Scholar 

  29. Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, Patel SB, Khalid L, Isseroff RR, Tomic-Canic M (2014) Epithelialization in wound healing: a comprehensive review. Adv Wound Care (New Rochelle) 3:445–464. https://doi.org/10.1089/wound.2013.0473

    Article  Google Scholar 

  30. Savoldi F, Ceroni M, Fussi F, Curti M (1987) Pharmacological effects of CEGABA, a new aminoacid occurring in mammalian brain. Farmaco Sci 42:77–79

    CAS  PubMed  Google Scholar 

  31. Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, Gottrup F, Gurtner GC, Longaker MT (2009) Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 17(6):763–771. https://doi.org/10.1111/j.1524-475X.2009.00543.x

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sgonc R, Gruber J (2013) Age-related aspects of cutaneous wound healing: a mini-review. Gerontology 59:159–164. https://doi.org/10.1159/000342344

    Article  PubMed  Google Scholar 

  33. Sikora E, Bielak-Zmijewska A, Mosieniak G (2014) Cellular senescence in ageing, age-related disease and longevity. Curr Vasc Pharmacol 12:698–706

    Article  CAS  PubMed  Google Scholar 

  34. Souza VM, Antunes D (2009) Ativos dermatológicos, 3rd edn. Pharmabooks, São Paulo

    Google Scholar 

  35. Swe M, Sit KH (2000) Z-VAD-fmk and DEVD-cho induced late mitosis arrest and apoptotic expressions. Apoptosis 5:29–36

    Article  CAS  PubMed  Google Scholar 

  36. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221

    Article  CAS  PubMed  Google Scholar 

  37. Tracy LE, Minasian RA, Caterson EJ (2016) Extracellular matrix and dermal fibroblast function in the healing wound. Adv Wound Care 5:119–136. https://doi.org/10.1089/wound.2014.0561

    Article  Google Scholar 

  38. Treiber N, Maity P, Singh K, Ferchiu F, Wlaschek M, Scharffetter-Kochanek K (2012) The role of manganese superoxide dismutase in skin aging. Dermatoendocrinology 4:232–235. https://doi.org/10.4161/derm.21819

    Article  CAS  Google Scholar 

  39. Verschoore M, Nielson M (2017) The rationale of anti-aging cosmetic ingredients. J Drugs Dermatol 16:s94–s97

    PubMed  Google Scholar 

  40. Vockel M, Pollok S, Breitenbach U, Ridderbusch I, Kreienkamp H, Brandner JM (2011) Somatostatin inhibits cell migration and reduces cell counts of human keratinocytes and delays epidermal wound healing in an ex vivo wound model. PLoS One 6:e19740. https://doi.org/10.1371/journal.pone.0019740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Walter MN, Wright KT, Fuller HR, MacNeil S, Johnson WE (2010) Mesenchymal stem cell-conditioned medium accelerates skin wound healing: an in vitro study of fibroblast and keratinocyte scratch assays. Exp Cell Res 316:1271–1281. https://doi.org/10.1016/j.yexcr.2010.02.026

    Article  CAS  PubMed  Google Scholar 

  42. Zhao T, Goh KJ, Ng HH, Vardy LA (2012) A role for polyamine regulators in ESC self-renewal. Cell Cycle 11:4517–4523. https://doi.org/10.4161/cc.22772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES) (Grant no. 181/2012). Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Grivicich.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos Laranjeira, V., da Silva Brum, L.F., de Freitas, L.B.R. et al. Carboxyethyl aminobutyric acid (CEGABA) lacks cytotoxicity and genotoxicity and stimulates cell proliferation and migration in vitro. Arch Dermatol Res 311, 491–497 (2019). https://doi.org/10.1007/s00403-019-01927-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-019-01927-8

Keywords

Navigation