Skip to main content

Advertisement

Log in

Effects of topical topiramate in wound healing in mice

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Recent studies have indicated that systemic topiramate can induce an improvement on the aesthetic appearance of skin scars. Here, we evaluated topical topiramate as an agent to improve wound healing in C57/BL6 mice. Mice were inflicted with a 6.0 mm punch to create two wounds in the skin of the dorsal region. Thereafter, mice were randomly assigned to either vehicle or topical topiramate (20 µl of 2% cream) once a day for 14 days, beginning on the same day as wound generation. We analyzed the wound samples over real-time PCR, Western blotting, and microscopy. There was no effect of the topiramate treatment on the time for complete reepithelization of the wound. However, on microscopic analysis, topiramate treatment resulted in increased granulation tissue, thicker epidermal repair, and improved deposition of type I collagen fibers. During wound healing, there were increased expressions of anti-inflammatory markers, such as IL-10, TGF-β1, and reduced expression of the active form of JNK. In addition, topiramate treatment increased the expression of active forms of two intermediaries in the insulin-signaling pathway, IRS-1 and Akt. Finally, at the end of the wound-healing process, topiramate treatment resulted in increased expression of SOX-2, a transcription factor that is essential to maintain cell self-renewal of undifferentiated embryonic stem cells. We conclude that topical topiramate can improve the overall quality of wound healing in the healthy skin of mice. This improvement is accompanied by reduced expression of markers involved in inflammation and increased expression of proteins of the insulin-signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ansell DM, Campbell L, Thomason HA, Brass A, Hardman MJ (2014) A statistical analysis of murine incisional and excisional acute wound models. Wound Repair Regen 22(2):281–287. https://doi.org/10.1111/wrr.12148

    Article  PubMed Central  PubMed  Google Scholar 

  2. Azevedo F, Pessoa A, Moreira G, Dos Santos M, Liberti E, Araujo E, Carvalho C, Saad M, Lima MH (2016) Effect of topical insulin on second-degree burns in diabetic rats. Biol Res Nurs 18(2):181–192. https://doi.org/10.1177/1099800415592175

    Article  CAS  PubMed  Google Scholar 

  3. Benoliel AM, Kahn-Perles B, Imbert J, Verrando P (1997) Insulin stimulates haptotactic migration of human epidermal keratinocytes through activation of NF-kappa B transcription factor. J Cell Sci 110(Pt 17):2089–2097

    CAS  PubMed  Google Scholar 

  4. Bharti R, Agarwal L (2005) Topiramate and scars. Dermatol Online J 11(3):42

    PubMed  Google Scholar 

  5. Caricilli AM, Penteado E, de Abreu LL, Quaresma PG, Santos AC, Guadagnini D, Razolli D, Mittestainer FC, Carvalheira JB, Velloso LA, Saad MJ, Prada PO (2012) Topiramate treatment improves hypothalamic insulin and leptin signaling and action and reduces obesity in mice. Endocrinology 153(9):4401–4411. https://doi.org/10.1210/en.2012-1272

    Article  CAS  PubMed  Google Scholar 

  6. Cuttle L, Nataatmadja M, Fraser JF, Kempf M, Kimble RM, Hayes MT (2005) Collagen in the scarless fetal skin wound: detection with picrosirius-polarization. Wound Repair Regen 13(2):198–204. https://doi.org/10.1111/j.1067-1927.2005.130211.x

    Article  PubMed  Google Scholar 

  7. Dimitriadis G, Mitrou P, Lambadiari V, Maratou E, Raptis SA (2011) Insulin effects in muscle and adipose tissue. Diabetes Res Clin Pract 93(Suppl 1):S52-59. https://doi.org/10.1016/S0168-8227(11)70014-6

    Google Scholar 

  8. Dunn L, Prosser HC, Tan JT, Vanags LZ, Ng MK, Bursill CA (2013) Murine model of wound healing. J Vis Exp (75):e50265. https://doi.org/10.3791/50265

    Google Scholar 

  9. Eming SA, Krieg T, Davidson JM (2007) Inflammation in wound repair: molecular and cellular mechanisms. J Investig Dermatol 127(3):514–525. https://doi.org/10.1038/sj.jid.5700701

    Article  CAS  PubMed  Google Scholar 

  10. Faught E (2007) Topiramate in the treatment of partial and generalized epilepsy. Neuropsychiatr Dis Treat 3(6):811–821

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Gerarduzzi C, Di Battista JA (2016) Myofibroblast repair mechanisms post-inflammatory response: a fibrotic perspective. Inflamm Res. https://doi.org/10.1007/s00011-016-1019-x

    PubMed  Google Scholar 

  12. Gomes FS, de-Souza GF, Nascimento LF, Arantes EL, Pedro RM, Vitorino DC, Nunez CE, Melo Lima MH, Velloso LA, Araujo EP (2014) Topical 5-azacytidine accelerates skin wound healing in rats. Wound Repair Regen 22(5):640–646. https://doi.org/10.1111/wrr.12213

    Article  PubMed  Google Scholar 

  13. Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193):314–321. https://doi.org/10.1038/nature07039

    Article  CAS  PubMed  Google Scholar 

  14. Haukipuro K, Melkko J, Risteli L, Kairaluoma M, Risteli J (1991) Synthesis of type I collagen in healing wounds in humans. Ann Surg 213(1):75–80

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Hish GA Jr, Diaz JA, Hawley AE, Myers DD Jr, Lester PA (2014) Effects of analgesic use on inflammation and hematology in a murine model of venous thrombosis. J Am Assoc Lab Anim Sci 53(5):485–493

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Jaber SM, Hankenson FC, Heng K, McKinstry-Wu A, Kelz MB, Marx JO (2014) Dose regimens, variability, and complications associated with using repeat-bolus dosing to extend a surgical plane of anesthesia in laboratory mice. J Am Assoc Lab Anim Sci 53(6):684–691

    PubMed Central  PubMed  Google Scholar 

  17. Jeffery Marano R, Jane Wallace H, Wijeratne D, William Fear M, San Wong H, O’Handley R (2015) Secreted biofilm factors adversely affect cellular wound healing responses in vitro. Sci Rep 5:13296. https://doi.org/10.1038/srep13296

    Article  PubMed Central  PubMed  Google Scholar 

  18. King A, Balaji S, Le LD, Crombleholme TM, Keswani SG (2014) Regenerative wound healing: the role of interleukin-10. Adv Wound Care (New Rochelle) 3(4):315–323. https://doi.org/10.1089/wound.2013.0461

    Article  Google Scholar 

  19. Liang Y, Chen X, Osborne M, DeCarlo SO, Jetton TL, Demarest K (2005) Topiramate ameliorates hyperglycaemia and improves glucose-stimulated insulin release in ZDF rats and db/db mice. Diabetes Obes Metab 7(4):360–369. https://doi.org/10.1111/j.1463-1326.2004.00403.x

    Article  CAS  PubMed  Google Scholar 

  20. Liechty KW, Kim HB, Adzick NS, Crombleholme TM (2000) Fetal wound repair results in scar formation in interleukin-10-deficient mice in a syngeneic murine model of scarless fetal wound repair. J Pediatr Surg 35(6):866–872. https://doi.org/10.1053/jpsu.2000.6868 (discussion 863–872.

    Article  CAS  PubMed  Google Scholar 

  21. Lima MH, Caricilli AM, de Abreu LL, Araujo EP, Pelegrinelli FF, Thirone AC, Tsukumo DM, Pessoa AF, dos Santos MF, de Moraes MA, Carvalheira JB, Velloso LA, Saad MJ (2012) Topical insulin accelerates wound healing in diabetes by enhancing the AKT and ERK pathways: a double-blind placebo-controlled clinical trial. PLoS One 7(5):e36974. https://doi.org/10.1371/journal.pone.0036974

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Lin F, Zhu J, Tonnesen MG, Taira BR, McClain SA, Singer AJ, Clark RAF (2014) Fibronectin peptides that bind PDGF-BB enhance survival of cells and tissue under stress. J Investig Dermatol 134(4):1119–1127. https://doi.org/10.1038/jid.2013.420

    Article  CAS  PubMed  Google Scholar 

  23. Liu Y, Petreaca M, Yao M, Martins-Green M (2009) Cell and molecular mechanisms of keratinocyte function stimulated by insulin during wound healing. BMC Cell Biol 10:1. https://doi.org/10.1186/1471-2121-10-1

    Article  PubMed Central  PubMed  Google Scholar 

  24. Martin JM, Zenilman JM, Lazarus GS (2010) Molecular microbiology: new dimensions for cutaneous biology and wound healing. J Investig Dermatol 130(1):38–48. https://doi.org/10.1038/jid.2009.221

    Article  CAS  PubMed  Google Scholar 

  25. Martino MM, Briquez PS, Ranga A, Lutolf MP, Hubbell JA (2013) Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proc Natl Acad Sci USA 110(12):4563–4568. https://doi.org/10.1073/pnas.1221602110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Midgley AC, Rogers M, Hallett MB, Clayton A, Bowen T, Phillips AO, Steadman R (2013) Transforming growth factor-beta1 (TGF-beta1)-stimulated fibroblast to myofibroblast differentiation is mediated by hyaluronan (HA)-facilitated epidermal growth factor receptor (EGFR) and CD44 co-localization in lipid rafts. J Biol Chem 288(21):14824–14838. https://doi.org/10.1074/jbc.M113.451336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Misumi Y, Akiyoshi T (1984) Scanning electron microscopic structure of the finger print as related to the dermal surface. Anat Rec 208(1):49–55. https://doi.org/10.1002/ar.1092080106

    Article  CAS  PubMed  Google Scholar 

  28. Monroe D (2007) Looking for chinks in the armor of bacterial biofilms. PLoS Biol 5(11):e307. https://doi.org/10.1371/journal.pbio.0050307

    Article  PubMed Central  PubMed  Google Scholar 

  29. Murphy PS, Evans GR (2012) Advances in wound healing: a review of current wound healing products. Plast Surg Int 2012:190436. https://doi.org/10.1155/2012/190436

  30. Ochoa JG (2014) Topiramate improves psychiatric symptoms in a patient with Lewy body dementia. Cogn Behav Neurol 27(4):222–223. https://doi.org/10.1097/WNN.0000000000000039

    Article  PubMed  Google Scholar 

  31. Panayiotopoulos CP (2005) In: The epilepsies: seizures, syndromes and management, chap 4. Bladon Medical Publishing, Oxfordshire. ISBN-10: 1-904218-34-2

  32. Peranteau WH, Zhang L, Muvarak N, Badillo AT, Radu A, Zoltick PW, Liechty KW (2008) IL-10 overexpression decreases inflammatory mediators and promotes regenerative healing in an adult model of scar formation. J Investig Dermatol 128(7):1852–1860. https://doi.org/10.1038/sj.jid.5701232

    Article  CAS  PubMed  Google Scholar 

  33. Powers SW, Coffey CS, Chamberlin LA, Ecklund DJ, Klingner EA, Yankey JW, Korbee LL, Porter LL, Hershey AD, Investigators C (2017) Trial of amitriptyline, topiramate, and placebo for pediatric migraine. N Engl J Med 376(2):115–124. https://doi.org/10.1056/NEJMoa1610384

    Article  CAS  PubMed  Google Scholar 

  34. Rawls SM, Thomas T, Adeola M, Patil T, Raymondi N, Poles A, Loo M, Raffa RB (2009) Topiramate antagonizes NMDA- and AMPA-induced seizure-like activity in planarians. Pharmacol Biochem Behav 93(4):363–367. https://doi.org/10.1016/j.pbb.2009.05.005

    Article  CAS  PubMed  Google Scholar 

  35. Reznikova TV, Phillips MA, Patterson TJ, Rice RH (2010) Opposing actions of insulin and arsenite converge on PKCdelta to alter keratinocyte proliferative potential and differentiation. Mol Carcinog 49(4):398–409. https://doi.org/10.1002/mc.20612

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Ryback R (2002) Topiramate in the treatment of psoriasis: a pilot study. Br J Dermatol 147(1):130–133

    Article  CAS  PubMed  Google Scholar 

  37. Shafik AN (2012) Effects of topiramate on diabetes mellitus induced by streptozotocin in rats. Eur J Pharmacol 684(1–3):161–167. https://doi.org/10.1016/j.ejphar.2012.03.042

    Article  CAS  PubMed  Google Scholar 

  38. Shapira NA, Lessig M, Murphy TK, Annis AM, Lazoritz M (2003) Evaluation of open-label topiramate for scar therapy. Dermatol Online J 9(5):3

    PubMed  Google Scholar 

  39. Shapira NA, Lessig MC, Murphy TK, Driscoll DJ, Goodman WK (2002) Topiramate attenuates self-injurious behaviour in Prader-Willi Syndrome. Int J Neuropsychopharmacol 5(2):141–145. https://doi.org/10.1017/S1461145702002833 doi

    Article  CAS  PubMed  Google Scholar 

  40. Shi JQ, Wang BR, Tian YY, Xu J, Gao L, Zhao SL, Jiang T, Xie HG, Zhang YD (2013) Antiepileptics topiramate and levetiracetam alleviate behavioral deficits and reduce neuropathology in APPswe/PS1dE9 transgenic mice. CNS Neurosci Ther 19(11):871–881. https://doi.org/10.1111/cns.12144

    Article  PubMed  Google Scholar 

  41. Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341(10):738–746. https://doi.org/10.1056/NEJM199909023411006

    Article  CAS  PubMed  Google Scholar 

  42. Somaiah C, Kumar A, Mawrie D, Sharma A, Patil SD, Bhattacharyya J, Swaminathan R, Jaganathan BG (2015) Collagen promotes higher adhesion, survival and proliferation of mesenchymal stem cells. PLoS One 10(12):e0145068. https://doi.org/10.1371/journal.pone.0145068

    Article  PubMed Central  PubMed  Google Scholar 

  43. Spanheimer RG, Umpierrez GE, Stumpf V (1988) Decreased collagen production in diabetic rats. Diabetes 37(4):371–376

    Article  CAS  PubMed  Google Scholar 

  44. Waetzig V, Czeloth K, Hidding U, Mielke K, Kanzow M, Brecht S, Goetz M, Lucius R, Herdegen T, Hanisch UK (2005) c-Jun N-terminal kinases (JNKs) mediate pro-inflammatory actions of microglia. Glia 50(3):235–246. https://doi.org/10.1002/glia.20173

    Article  PubMed  Google Scholar 

  45. Walraven M, Akershoek JJ, Beelen RH, Ulrich MM (2017) In vitro cultured fetal fibroblasts have myofibroblast-associated characteristics and produce a fibrotic-like environment upon stimulation with TGF-beta1: Is there a thin line between fetal scarless healing and fibrosis? Arch Dermatol Res 309(2):111–121. https://doi.org/10.1007/s00403-016-1710-3

    Article  CAS  PubMed  Google Scholar 

  46. Wang XJ, Han G, Owens P, Siddiqui Y, Li AG (2006) Role of TGF beta-mediated inflammation in cutaneous wound healing. J Investig Dermatol Symp Proc 11(1):112–117

    Article  CAS  PubMed  Google Scholar 

  47. Wolf K, Te Lindert M, Krause M, Alexander S, Te Riet J, Willis AL, Hoffman RM, Figdor CG, Weiss SJ, Friedl P (2013) Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J Cell Biol 201(7):1069–1084. https://doi.org/10.1083/jcb.201210152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Zhao G, Liu F, Lan S, Li P, Wang L, Kou J, Qi X, Fan R, Hao D, Wu C, Bai T, Li Y, Liu JY (2015) Large-scale expansion of Wharton’s jelly-derived mesenchymal stem cells on gelatin microbeads, with retention of self-renewal and multipotency characteristics and the capacity for enhancing skin wound healing. Stem Cell Res Ther 6:38. https://doi.org/10.1186/s13287-015-0031-3

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. E. Roman, G. Ferraz, and M. Cruz for technical assistance. Sao Paulo Research Foundation and Coimbra Group of Brazilian Universities Education provided the grants for this study. The authors belong to the Obesity and Comorbidities Research Center, Brazil.

Funding

This work was supported by grant from São Paulo Research Foundation—CEPID-OCRC—Obesity Comorbidities Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliana P. Araújo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The Ethics Committee of the University of Campinas approved all experiments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jara, C.P., Bóbbo, V.C.D., Carraro, R.S. et al. Effects of topical topiramate in wound healing in mice. Arch Dermatol Res 310, 363–373 (2018). https://doi.org/10.1007/s00403-018-1822-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-018-1822-z

Keywords

Navigation