Skip to main content

Advertisement

Log in

The synergistic effect of maltose enhances the anti-melanogenic activity of acarbose

  • Concise Communication
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Melanocytes play an important role in maintaining epidermal homeostasis by producing melanin and protecting the skin from harmful environmental factors. However, excessive up- or down-regulation of melanin production often causes hyper- or hypo-pigmented disorders, respectively, which affect the patient’s quality of life. Therefore, various strategies for modulating melanin levels have been developed by the pharmaceutical and cosmetic industries. We reported previously that voglibose, which is a well-known anti-hyperglycemic agent, could be used as an anti-melanogenic agent by inhibiting α-glucosidase activity and reducing tyrosinase protein levels. Of the other representative anti-hyperglycemic agents, acarbose showed less anti-melanogenic activity despite its potent anti-hyperglycemic efficacy. In this study, we report that acarbose exhibited considerable anti-melanogenic activity when melanocytes were co-treated with acarbose and a digestible sugar, such as maltose. Simultaneous treatment with maltose augmented the inhibitory effect of acarbose on α-glucosidase activity by enhancing its stability under physiological conditions, leading to the down-regulation of tyrosinase. These results suggest that the co-treatment of anti-hyperglycemic agents with hydrolysable sugars may be a useful tool for reducing glucosidase-associated melanogenesis as a potent sugar-based anti-melanogenic regimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Amer M, Metwalli M (1998) Topical hydroquinone in the treatment of some hyperpigmentary disorders. Int J Dermatol 37:449–450

    Article  CAS  PubMed  Google Scholar 

  2. Bhin J, Jeong HS, Kim JS, Shin JO, Hong KS, Jung HS, Kim C, Hwang D, Kim KS (2015) PGC-enriched miRNAs control germ cell development. Mol Cells 38:895–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bin BH, Seo J, Yang SH, Lee E, Choi H, Kim KH, Cho EG, Lee TR (2013) Novel inhibitory effect of the antidiabetic drug voglibose on melanogenesis. Exp Dermatol 22:541–546

    Article  CAS  PubMed  Google Scholar 

  4. Bin BH, Bhin J, Yang SH, Choi DH, Park K, Shin DW, Lee AY, Hwang D, Cho EG, Lee TR (2014) Hyperosmotic stress reduces melanin production by altering melanosome formation. PLoS One 9:e105965

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bin BH, Joo YH, Lee AY, Shin SS, Cho EG, Lee TR (2014) Novel inhibitory effect of N-(2-hydroxycyclohexyl)valiolamine on melanin production in a human skin model. Int J Mol Sci 15:12188–12195

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bin BH, Bhin J, Yang SH, Shin M, Nam YJ, Choi DH, Shin DW, Lee AY, Hwang D, Cho EG, Lee TR (2015) Membrane-associated transporter protein (MATP) regulates melanosomal pH and influences tyrosinase activity. PLoS One 10:e0129273

    Article  PubMed  PubMed Central  Google Scholar 

  7. Branza-Nichita N, Negroiu G, Petrescu AJ, Garman EF, Platt FM, Wormald MR, Dwek RA, Petrescu SM (2000) Mutations at critical N-glycosylation sites reduce tyrosinase activity by altering folding and quality control. J Biol Chem 275:8169–8175

    Article  CAS  PubMed  Google Scholar 

  8. Brenner M, Hearing VJ (2008) The protective role of melanin against UV damage in human skin. Photochem Photobiol 84:539–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cho EA, Lee MA, Kang H, Lee SD, Kim HO, Park YM (2009) Vitiligo-like depigmentation associated with metastatic melanoma of an unknown origin. Ann Dermatol 21:178–181

    Article  PubMed  PubMed Central  Google Scholar 

  10. Choi H, Ahn S, Chang H, Cho NS, Joo K, Lee BG, Chang I, Hwang JS (2007) Influence of N-glycan processing disruption on tyrosinase and melanin synthesis in HM3KO melanoma cells. Exp Dermatol 16:110–117

    Article  CAS  PubMed  Google Scholar 

  11. Davis EC, Callender VD (2010) Postinflammatory hyperpigmentation: a review of the epidemiology, clinical features, and treatment options in skin of color. J Clin Aesthet Dermatol 3:20–31

    PubMed  PubMed Central  Google Scholar 

  12. Ebanks JP, Wickett RR, Boissy RE (2009) Mechanisms regulating skin pigmentation: the rise and fall of complexion coloration. Int J Mol Sci 10:4066–4087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Inoue Y, Hasegawa S, Yamada T, Date Y, Mizutani H, Nakata S, Matsunaga K, Akamatsu H (2013) Analysis of the effects of hydroquinone and arbutin on the differentiation of melanocytes. Biol Pharm Bull 36:1722–1730

    Article  CAS  PubMed  Google Scholar 

  14. Lee HJ, Suk JE, Patrick C, Bae EJ, Cho JH, Rho S, Hwang D, Masliah E, Lee SJ (2010) Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem 285:9262–9272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lin JY, Fisher DE (2007) Melanocyte biology and skin pigmentation. Nature 445:843–850

    Article  CAS  PubMed  Google Scholar 

  16. Nicolaidou E, Katsambas AD (2014) Pigmentation disorders: hyperpigmentation and hypopigmentation. Clin Dermatol 32:66–72

    Article  PubMed  Google Scholar 

  17. Pinto FJ, Bolognia JL (1991) Disorders of hypopigmentation in children. Pediatr Clin N Am 38:991–1017

    Article  CAS  Google Scholar 

  18. Rigopoulos D, Gregoriou S, Katsambas A (2007) Hyperpigmentation and melasma. J Cosmet Dermatol 6:195–202

    Article  CAS  PubMed  Google Scholar 

  19. Ritchie ME, Dunning MJ, Smith ML, Shi W, Lynch AG (2011) BeadArray expression analysis using bioconductor. PLoS Comput Biol 7:e1002276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Slominski A, Tobin DJ, Shibahara S, Wortsman J (2004) Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev 84:1155–1228

    Article  CAS  PubMed  Google Scholar 

  21. Speeckaert R, Van Gele M, Speeckaert MM, Lambert J, van Geel N (2014) The biology of hyperpigmentation syndromes. Pigment Cell Melanoma Res 27:512–524

    Article  CAS  PubMed  Google Scholar 

  22. Tran TT, Schulman J, Fisher DE (2008) UV and pigmentation: molecular mechanisms and social controversies. Pigment Cell Melanoma Res 21:509–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van den Boorn JG, Picavet DI, van Swieten PF, van Veen HA, Konijnenberg D, van Veelen PA, van Capel T, Jong EC, Reits EA, Drijfhout JW, Bos JD, Melief CJ, Luiten RM (2011) Skin-depigmenting agent monobenzone induces potent T-cell autoimmunity toward pigmented cells by tyrosinase haptenation and melanosome autophagy. J Invest Dermatol 131:1240–1251

    Article  PubMed  Google Scholar 

  24. Vashi NA, Kundu RV (2013) Facial hyperpigmentation: causes and treatment. Br J Dermatol 169(Suppl 3):41–56

    Article  PubMed  Google Scholar 

  25. Videira IF, Moura DF, Magina S (2013) Mechanisms regulating melanogenesis. An Bras Dermatol 88:76–83

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang N, Hebert DN (2006) Tyrosinase maturation through the mammalian secretory pathway: bringing color to life. Pigment Cell Res 19:3–18

    Article  PubMed  Google Scholar 

  27. Woolery-Lloyd HC, Keri J, Doig S (2013) Retinoids and azelaic acid to treat acne and hyperpigmentation in skin of color. J Drugs Dermatol 12:434–437

    CAS  PubMed  Google Scholar 

  28. Yamaguchi Y, Brenner M, Hearing VJ (2007) The regulation of skin pigmentation. J Biol Chem 282:27557–27561

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tae Ryong Lee or Eun-Gyung Cho.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

B.-H. Bin and S. T. Kim contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 109 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bin, BH., Kim, S.T., Bhin, J. et al. The synergistic effect of maltose enhances the anti-melanogenic activity of acarbose. Arch Dermatol Res 309, 217–223 (2017). https://doi.org/10.1007/s00403-017-1717-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-017-1717-4

Keywords

Navigation