Skip to main content
Log in

Anchoring and resulting primary stability of a kinked compared to a straight uncemented femoral stem

  • Hip Arthroplasty
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

The number of revision hip arthroplasties being performed is growing and implantation of a cementless stem has become established as the gold standard. For producing a primary stability, the press-fit procedure is the method of choice, but also can be achieved by multiple-point impactions. Specific femoral stems should follow the anatomical shape and provide a more extensive anchorage. The objective of this study was to evaluate the type, localization of the impaction and resulting primary stability of two different femoral revision stem designs (kinked vs. straight) after implantation via an endofemoral approach in the case of more extensive defects of the proximal femur.

Materials and methods

Cementless stems of two different designs were implanted in synthetic femurs. The specimens were analyzed by CT and tested considering axial/torsional stiffness and migration resistance in a servohydraulic testing machine.

Results

The present data do not show any significant differences between the two endofemorally implanted conical stems in contact area or in biomechanics with regard to migration and axial or torsional stiffness, despite having different designs.

Conclusions

The location, type and length of the stem anchorage are not only influenced by the kinked or straight design, but in particular also by the surgical approach. Also in the case of an extensive proximal bone defect, in the endofemoral approach, both a conical and a three-point anchorage occur. Here, the length of the conical anchorage determines the primary stability and should be at least 55 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abendschein W (2003) Periprosthetic femur fractures—a growing epidemic. Am J Orthop 32(9 Suppl):34–36

    PubMed  Google Scholar 

  2. Lindahl H (2007) Epidemiology of periprosthetic femur fracture around a total hip arthroplasty. Injury 38(6):651–654. https://doi.org/10.1016/j.injury.2007.02.048

    Article  PubMed  Google Scholar 

  3. Wähnert D, Schröder R, Schulze M et al (2014) Biomechanical comparison of two angular stable plate constructions for periprosthetic femur fracture fixation. Int Orthop 38(1):47–53. https://doi.org/10.1007/s00264-013-2113-0

    Article  PubMed  Google Scholar 

  4. Morrey BF, Kavanagh BF (1992) Complications with revision of the femoral component of total hip arthroplasty. Comparison between cemented and uncemented techniques. J Arthroplast 7(1):71–79

    Article  CAS  Google Scholar 

  5. Lewallen DG, Berry DJ (1998) Periprosthetic fracture of the femur after total hip arthroplasty: treatment and results to date. Instr Course Lect 47:243–249

    CAS  PubMed  Google Scholar 

  6. Kavanagh BF (1992) Femoral fractures associated with total hip arthroplasty. Orthop Clin North Am 23(2):249–257

    CAS  PubMed  Google Scholar 

  7. Skutek M, Bourne RB, Mac Donald SJ (2006) International epidemiology of revision THR. Curr Orthop 20:157–161

    Article  Google Scholar 

  8. Faschingbauer M, Kessler S, HJürgens C (2014) Periprosthetic fractures in enclosed total hip arthroplasty. Trauma Berufskrankh 16(4):349–353

    Article  Google Scholar 

  9. Wirtz DC, Niethard FU (1997) Etiology, diagnosis and therapy of aseptic hip prosthesis loosening—a status assessment (Ursachen, Diagnostik und Therapie der aseptischen Huftendoprothesenlockerung–eine Standortbestimmung). Z Orthop Ihre Grenzgeb 135(4):270–280. https://doi.org/10.1055/s-2008-1039388

    Article  CAS  PubMed  Google Scholar 

  10. Paprosky WG, Greidanus NV, Antoniou J (1999) Minimum 10-year-results of extensively porous-coated stems in revision hip arthroplasty. Clin Orthop Relat Res 369:230–242

    Article  Google Scholar 

  11. Pilliar RM, Lee JM, Maniatopoulos C (1986) Observations on the effect of movement on bone ingrowth into porous-surfaced implants. Clin Orthop Relat Res 208:108–113

    Google Scholar 

  12. Engh CA, O’Connor D, Jasty M et al (1992) Quantification of implant micromotion, strain shielding, and bone resorption with porous-coated anatomic medullary locking femoral prostheses. Clin Orthop Relat Res 285:13–29

    Google Scholar 

  13. Diehl P, Haenle M, Bergschmidt P et al (2010) Zementfreie Hüftendoprothetik: eine aktuelle Übersicht/Cementless total hip arthroplasty: a review (Cementless total hip arthroplasty: a review). Biomed Tech (Berl) 55(5):251–264. https://doi.org/10.1515/BMT.2010.037

    Article  Google Scholar 

  14. Mai KT, Verioti CA, Casey K et al (2010) Cementless femoral fixation in total hip arthroplasty. Am J Orthop 39(3):126–130

    PubMed  Google Scholar 

  15. Fink B, Fuerst M, Hahn M et al (2005) Principles of fixation of the cementless modular revision stem Revitan (Fixationsprinzipien des zementlosen modularen Huftrevisionsschaftes Revitan. Eine anatomische Studie). Unfallchirurg 108(12):1029–1032. https://doi.org/10.1007/s00113-005-0990-4 (1034–1037)

    Article  CAS  PubMed  Google Scholar 

  16. Sieber HP, Le Bèguec P (2001) Einsatz des PFM-R-Schaftes bei Revisionseingriffen. In: Perka C, Zippel H (eds) Revisionsendoprothetik des Hüftgelenkes. Schaftrekonstruktion und perioperatives management. Einhorn, Reinbeck, pp 174–184

    Google Scholar 

  17. Fink B, Grossmann A, Schubring S et al (2007) A modified transfemoral approach using modular cementless revision stems. Clin Orthop Relat Res 462:105–114. https://doi.org/10.1097/BLO.0b013e3180986170

    Article  PubMed  Google Scholar 

  18. Wirtz DC, Heller KD, Holzwarth U et al (2000) A modular femoral implant for uncemented stem revision in THR. Int Orthop 24(3):134–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rodriguez JA, Fada R, Murphy SB et al (2009) Two-year to five-year follow-up of femoral defects in femoral revision treated with the link MP modular stem. J Arthroplast 24(5):751–758. https://doi.org/10.1016/j.arth.2008.09.011

    Article  Google Scholar 

  20. Meneghini RM, Hallab NJ, Berger RA et al. (2006) Stem diameter and rotational stability in revision total hip arthroplasty: a biomechanical analysis. J Orthop Surg Res 1:5. https://doi.org/10.1186/1749-799X-1-5

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bougherara H, Zdero R, Shah S et al (2010) A biomechanical assessment of modular and monoblock revision hip implants using FE analysis and strain gage measurements. J Orthop Surg Res 5:34. https://doi.org/10.1186/1749-799X-5-34

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zdero R, Walker R, Waddell JP et al (2008) Biomechanical evaluation of periprosthetic femoral fracture fixation. J B Jt Surg Am 90(5):1068–1077. https://doi.org/10.2106/JBJS.F.01561

    Article  Google Scholar 

  23. Heiner AD (2008) Structural properties of fourth-generation composite femurs and tibias. J Biomech 41(15):3282–3284. https://doi.org/10.1016/j.jbiomech.2008.08.013

    Article  PubMed  Google Scholar 

  24. Wagner H, Wagner M (1993) Femur revision prosthesis (Femur-Revisionsprothese). Z Orthop Ihre Grenzgeb 131(6):574–577. https://doi.org/10.1055/s-2008-1040074

    Article  CAS  PubMed  Google Scholar 

  25. Engh CA, Bobyn JD, Glassman AH (1987) Porous-coated hip replacement. The factors governing bone ingrowth, stress shielding, and clinical results. J B Jt Surg Br 69(1):45–55

    CAS  Google Scholar 

  26. Lester DK, Campbell P, Ehya A et al (1998) Assessment of press-fit hip femoral components retrieved at autopsy. Orthopedics 21(1):27–33

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Heinecke.

Ethics declarations

Funding

None.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heinecke, M., Rathje, F., Layher, F. et al. Anchoring and resulting primary stability of a kinked compared to a straight uncemented femoral stem. Arch Orthop Trauma Surg 138, 115–121 (2018). https://doi.org/10.1007/s00402-017-2833-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-017-2833-5

Keywords

Navigation