Skip to main content
Log in

Clinical and molecular heterogeneity of pineal parenchymal tumors: a consensus study

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Recent genomic studies have shed light on the biology and inter-tumoral heterogeneity underlying pineal parenchymal tumors, in particular pineoblastomas (PBs) and pineal parenchymal tumors of intermediate differentiation (PPTIDs). Previous reports, however, had modest sample sizes and lacked the power to integrate molecular and clinical findings. The different proposed molecular group structures also highlighted a need to reach consensus on a robust and relevant classification system. We performed a meta-analysis on 221 patients with molecularly characterized PBs and PPTIDs. DNA methylation profiles were analyzed through complementary bioinformatic approaches and molecular subgrouping was harmonized. Demographic, clinical, and genomic features of patients and samples from these pineal tumor groups were annotated. Four clinically and biologically relevant consensus PB groups were defined: PB-miRNA1 (n = 96), PB-miRNA2 (n = 23), PB-MYC/FOXR2 (n = 34), and PB-RB1 (n = 25). A final molecularly distinct group, designated PPTID (n = 43), comprised histological PPTID and PBs. Genomic and transcriptomic profiling allowed the characterization of oncogenic drivers for individual tumor groups, specifically, alterations in the microRNA processing pathway in PB-miRNA1/2, MYC amplification and FOXR2 overexpression in PB-MYC/FOXR2, RB1 alteration in PB-RB1, and KBTBD4 insertion in PPTID. Age at diagnosis, sex predilection, and metastatic status varied significantly among tumor groups. While patients with PB-miRNA2 and PPTID had superior outcome, survival was intermediate for patients with PB-miRNA1, and dismal for those with PB-MYC/FOXR2 or PB-RB1. Reduced-dose CSI was adequate for patients with average-risk, PB-miRNA1/2 disease. We systematically interrogated the clinical and molecular heterogeneity within pineal parenchymal tumors and proposed a consensus nomenclature for disease groups, laying the groundwork for future studies as well as routine use in tumor diagnostic classification and clinical trial stratification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Abdelbaki MS, Abu-Arja MH, Davidson TB, Fangusaro JR, Stanek JR, Dunkel IJ et al (2020) Pineoblastoma in children less than six years of age: The Head Start I, II, and III experience. Pediatr Blood Cancer 67:e28252. https://doi.org/10.1002/pbc.28252

    Article  PubMed  PubMed Central  Google Scholar 

  2. Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD et al (2014) Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 30:1363–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bandopadhayay P, Bergthold G, Nguyen B, Schubert S, Gholamin S, Tang Y et al (2014) BET bromodomain inhibition of MYC-amplified medulloblastoma. Clin Cancer Res 20:912–925. https://doi.org/10.1158/1078-0432.Ccr-13-2281

    Article  CAS  PubMed  Google Scholar 

  4. Bolin S, Borgenvik A, Persson CU, Sundström A, Qi J, Bradner JE et al (2018) Combined BET bromodomain and CDK2 inhibition in MYC-driven medulloblastoma. Oncogene 37:2850–2862. https://doi.org/10.1038/s41388-018-0135-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bowles E, Corson TW, Bayani J, Squire JA, Wong N, Lai PB-S et al (2007) Profiling genomic copy number changes in retinoblastoma beyond loss of RB1. Genes Chromosom Cancer 46:118–129. https://doi.org/10.1002/gcc.20383

    Article  CAS  PubMed  Google Scholar 

  6. Canning P, Cooper CD, Krojer T, Murray JW, Pike AC, Chaikuad A et al (2013) Structural basis for Cul3 protein assembly with the BTB-Kelch family of E3 ubiquitin ligases. J Biol Chem 288:7803–7814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Capper D, Jones DT, Sill M, Hovestadt V, Schrimpf D, Sturm D et al (2018) DNA methylation-based classification of central nervous system tumours. Nature 555:469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chung PED, Gendoo DMA, Ghanbari-Azarnier R, Liu JC, Jiang Z, Tsui J et al (2020) Modeling germline mutations in pineoblastoma uncovers lysosome disruption-based therapy. Nat Commun 11:1825–1825. https://doi.org/10.1038/s41467-020-15585-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. de Kock L, Priest JR, Foulkes WD, Alexandrescu S (2019) An update on the central nervous system manifestations of DICER1 syndrome. Acta Neuropathol. https://doi.org/10.1007/s00401-019-01997-y

    Article  PubMed  PubMed Central  Google Scholar 

  10. de Kock L, Rivera B, Foulkes WD (2020) Pineoblastoma is uniquely tolerant of mutually exclusive loss of DICER1, DROSHA or DGCR8. Acta Neuropathol 139:1115–1118. https://doi.org/10.1007/s00401-020-02139-5

    Article  PubMed  Google Scholar 

  11. Foulkes WD, Priest JR, Duchaine TF (2014) DICER1: mutations, microRNAs and mechanisms. Nat Rev Cancer 14:662–672. https://doi.org/10.1038/nrc3802

    Article  CAS  PubMed  Google Scholar 

  12. Gaujoux R, Seoighe C (2010) A flexible R package for nonnegative matrix factorization. BMC Bioinform 11:367

    Article  Google Scholar 

  13. Gururangan S, McLaughlin C, Quinn J, Rich J, Reardon D, Halperin EC et al (2003) High-dose chemotherapy with autologous stem-cell rescue in children and adults with newly diagnosed pineoblastomas. J Clin Oncol 21:2187–2191

    Article  CAS  PubMed  Google Scholar 

  14. Ho B, Johann PD, Grabovska Y, De Dieu Andrianteranagna MJ, Yao F, Frühwald M et al (2020) Molecular subgrouping of atypical teratoid/rhabdoid tumors—a reinvestigation and current consensus. Neuro Oncol 22:613–624

    Article  CAS  PubMed  Google Scholar 

  15. Hovestadt V, Zapatka M (2017) Conumee: enhanced copy-number variation analysis using Illumina DNA methylation arrays. R package version 1

  16. Hwang EI, Kool M, Burger PC, Capper D, Chavez L, Brabetz S et al (2018) Extensive molecular and clinical heterogeneity in patients with histologically diagnosed CNS-PNET treated as a single entity: a report from the children’s oncology group randomized ACNS0332 trial. J Clin Oncol 36:3388–3395. https://doi.org/10.1200/jco.2017.76.4720

    Article  CAS  PubMed Central  Google Scholar 

  17. Jouvet A, Saint-Pierre G, Fauchon F, Privat K, Bouffet E, Ruchoux MM et al (2000) Pineal parenchymal tumors: a correlation of histological features with prognosis in 66 cases. Brain Pathol 10:49–60. https://doi.org/10.1111/j.1750-3639.2000.tb00242.x

    Article  CAS  PubMed  Google Scholar 

  18. Lambo S, Gröbner SN, Rausch T, Waszak SM, Schmidt C, Gorthi A et al (2019) The molecular landscape of ETMR at diagnosis and relapse. Nature 576:274–280. https://doi.org/10.1038/s41586-019-1815-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee JC, Mazor T, Lao R, Wan E, Diallo AB, Hill NS et al (2019) Recurrent KBTBD4 small in-frame insertions and absence of DROSHA deletion or DICER1 mutation differentiate pineal parenchymal tumor of intermediate differentiation (PPTID) from pineoblastoma. Acta Neuropathol 137:851–854. https://doi.org/10.1007/s00401-019-01990-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li BK, Vasiljevic A, Dufour C, Yao F, Ho BLB, Lu M et al (2020) Pineoblastoma segregates into molecular sub-groups with distinct clinico-pathologic features: a Rare Brain Tumor Consortium registry study. Acta Neuropathol 139:223–241. https://doi.org/10.1007/s00401-019-02111-y

    Article  CAS  PubMed  Google Scholar 

  21. Li X, Wang W, Xi Y, Gao M, Tran M, Aziz KE et al (2016) FOXR2 interacts with MYC to promote its transcriptional activities and tumorigenesis. Cell Rep 16:487–497. https://doi.org/10.1016/j.celrep.2016.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu APY, Gudenas B, Lin T, Orr BA, Klimo P Jr, Kumar R et al (2020) Risk-adapted therapy and biological heterogeneity in pineoblastoma: integrated clinico-pathological analysis from the prospective, multi-center SJMB03 and SJYC07 trials. Acta Neuropathol 139:259–271. https://doi.org/10.1007/s00401-019-02106-9

    Article  CAS  PubMed  Google Scholar 

  23. Lvd M, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605

    Google Scholar 

  24. Mallick S, Benson R, Rath GK (2016) Patterns of care and survival outcomes in patients with pineal parenchymal tumor of intermediate differentiation: An individual patient data analysis. Radiother Oncol 121:204–208. https://doi.org/10.1016/j.radonc.2016.10.025

    Article  PubMed  Google Scholar 

  25. McInnes L, Healy J, Melville J (2018) Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint180203426

  26. Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, Getz G (2011) GISTIC2. 0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol 12: R41

  27. Mulhern RK, Palmer SL, Merchant TE, Wallace D, Kocak M, Brouwers P et al (2005) Neurocognitive consequences of risk-adapted therapy for childhood medulloblastoma. J Clin Oncol 23:5511–5519

    Article  PubMed  Google Scholar 

  28. Mynarek M, Pizer B, Dufour C, van Vuurden D, Garami M, Massimino M et al (2017) Evaluation of age-dependent treatment strategies for children and young adults with pineoblastoma: analysis of pooled European Society for Paediatric Oncology (SIOP-E) and US Head Start data. Neuro Oncol 19:576–585. https://doi.org/10.1093/neuonc/now234

    Article  CAS  PubMed  Google Scholar 

  29. Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C et al (2019) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro Oncol 21:v1–v100. https://doi.org/10.1093/neuonc/noz150

    Article  PubMed  PubMed Central  Google Scholar 

  30. Parikh KA, Venable GT, Orr BA, Choudhri AF, Boop FA, Gajjar AJ et al (2017) Pineoblastoma—the experience at St Jude Children’s Research Hospital. Neurosurgery 81:120–128. https://doi.org/10.1093/neuros/nyx005

    Article  PubMed  Google Scholar 

  31. Pfaff E, Aichmüller C, Sill M, Stichel D, Snuderl M, Karajannis MA et al (2020) Molecular subgrouping of primary pineal parenchymal tumors reveals distinct subtypes correlated with clinical parameters and genetic alterations. Acta Neuropathol 139:243–257. https://doi.org/10.1007/s00401-019-02101-0

    Article  CAS  PubMed  Google Scholar 

  32. Pizer BL, Weston CL, Robinson KJ, Ellison DW, Ironside J, Saran F et al (2006) Analysis of patients with supratentorial primitive neuro-ectodermal tumours entered into the SIOP/UKCCSG PNET 3 study. Eur J Cancer 42:1120–1128. https://doi.org/10.1016/j.ejca.2006.01.039

    Article  PubMed  Google Scholar 

  33. Raleigh DR, Solomon DA, Lloyd SA, Lazar A, Garcia MA, Sneed PK et al (2017) Histopathologic review of pineal parenchymal tumors identifies novel morphologic subtypes and prognostic factors for outcome. Neuro Oncol 19:78–88

    Article  CAS  PubMed  Google Scholar 

  34. Reddy AT, Janss AJ, Phillips PC, Weiss HL, Packer RJ (2000) Outcome for children with supratentorial primitive neuroectodermal tumors treated with surgery, radiation, and chemotherapy. Cancer 88:2189–2193

    Article  CAS  PubMed  Google Scholar 

  35. Sabbaghian N, Hamel N, Srivastava A, Albrecht S, Priest JR, Foulkes WD (2012) Germline DICER1 mutation and associated loss of heterozygosity in a pineoblastoma. J Med Genet 49:417–419

    Article  CAS  PubMed  Google Scholar 

  36. Sahm F, Schrimpf D, Jones DTW, Meyer J, Kratz A, Reuss D et al (2016) Next-generation sequencing in routine brain tumor diagnostics enables an integrated diagnosis and identifies actionable targets. Acta Neuropathol 131:903–910

    Article  CAS  PubMed  Google Scholar 

  37. Schmitt-Hoffner F, van Rijn S, Hübner J-M, Lambo S, Mauermann M, Mack N et al (2020) ETMR-03. The role of FOXR2 in pediatric brain cancer. Neuro Oncol 22:iii323

    Article  PubMed Central  Google Scholar 

  38. Snuderl M, Kannan K, Pfaff E, Wang S, Stafford JM, Serrano J et al (2018) Recurrent homozygous deletion of DROSHA and microduplication of PDE4DIP in pineoblastoma. Nat Commun 9:2868. https://doi.org/10.1038/s41467-018-05029-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tate M, Sughrue ME, Rutkowski MJ, Kane AJ, Aranda D, McClinton L et al (2012) The long-term postsurgical prognosis of patients with pineoblastoma. Cancer 118:173–179. https://doi.org/10.1002/cncr.26300

    Article  PubMed  Google Scholar 

  40. Timmermann B, Kortmann R-D, Kühl J, Meisner C, Dieckmann K, Pietsch T et al (2002) Role of Radiotherapy in the Treatment of Supratentorial Primitive Neuroectodermal Tumors in Childhood: Results of the Prospective German Brain Tumor Trials HIT 88/89 and 91. J Clin Oncol 20:842–849. https://doi.org/10.1200/jco.2002.20.3.842

    Article  PubMed  Google Scholar 

  41. Vasiljevic A, Fèvre-Montange M, Jouvet A (2018) 11 - pineal parenchymal tumors. In: Perry A, Brat DJ (eds) Practical surgical neuropathology: a diagnostic approach (Second Edition). Elsevier, City, pp 219–232

  42. Wilkerson MD, Hayes DN (2010) ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics 26:1572–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wong FL, Boice JD, Abramson DH, Tarone RE, Kleinerman RA, Stovall M et al (1997) Cancer incidence after retinoblastoma: radiation dose and sarcoma risk. JAMA 278:1262–1267

    Article  CAS  PubMed  Google Scholar 

  44. Zeltzer PM, Boyett JM, Finlay JL, Albright AL, Rorke LB, Milstein JM et al (1999) Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: conclusions from the Children’s Cancer Group 921 randomized phase III study. J Clin Oncol 17:832–845. https://doi.org/10.1200/jco.1999.17.3.832

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the clinical and research staff of participating sites for contributing to the care and study of all involved patients, collaborators of the Rare Brain Tumor Consortium (Rarebraintumorconsortium.ca), German Cancer Research Center, and St. Jude Children’s Research Hsopital. We are grateful to Dr. Carmine Mottolese, Department of Pediatric Neurosurgery, Hôpital Femme Mère Enfant, Hospices Civils de Lyon for his neurosurgical expertise. We would like to acknowledge the MSK Kids Pediatric Translational Medicine Program (PTMP), the Director of the PTMP, Dr. Neerav Shukla, and the Scarlett Fund for their support with the data generation and curation. Funding was provided by American Lebanese Syrian Associated Charities, National Cancer Institute Cancer Center Grant (P30 CA021765) to St. Jude Children’s Research Hospital, National Cancer Institute Cancer Center Grant (P30 CA008748) to Memorial Sloan Kettering Cancer Center, the German Childhood Cancer Foundation (DKS 2015.01; “Molecular Neuropathology 2.0—Increasing diagnostic accuracy in pediatric neurooncology”) (D.T.W.J.), the GPOH HIT-MED trial group (S.R.), the Friedberg Charitable Foundation (M.S.), the Making Headway Foundation to NYU (M.S.), b.r.a.i.n.child (B.K.L.), Garron Family Center Research Fellowship (B.K.L.), Canada Research Chair Award (A.H.), Canadian Cancer Society Research Institute Grant (A.H.), Canadian Institute of Health Research Grant (A.H.), and SickKids Foundation Pitblado Grant (A.H.).

Funding

The funders of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report.

Author information

Authors and Affiliations

Authors

Contributions

Study Design: APYL, BKL, EP, BG, PAN, DTWJ, AH Data generation: APYL, BKL, EP, BG, AV, BAO, CD, MS, MAK, MKR, ML, NB, EIH, HKN, MK, CH, PAN, DTWJ, AH Data analysis: APYL, BKL, EP, BG, AOT Project support: AV, BAO, CD, MS, MAK, MKR, ML, NB, EIH, HKN, JRH, AS, CFC, TEM, KvH, MM, SR, FS, MK, CH, AOT, GWR, AG, SMP, EB Manuscript preparation (with feedback from all authors): APYL, BKL, EP, BG, PAN, DTWJ, AH Study supervision and funding: PAN, DTWJ, AH

Corresponding author

Correspondence to Annie Huang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics committee approval

Clinical data and tumor material were obtained according to Institutional Review Board approval from St. Jude Children's Research Hospital, Hospital for Sick Children, and contributing sites to German Cancer Research Center.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Anthony P. Y. Liu, Bryan K. Li, Elke Pfaff and Brian Gudenas shared first authors.

Paul A. Northcott, David T.W. Jones and Annie Huang shared senior authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 6248 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, A.P.Y., Li, B.K., Pfaff, E. et al. Clinical and molecular heterogeneity of pineal parenchymal tumors: a consensus study. Acta Neuropathol 141, 771–785 (2021). https://doi.org/10.1007/s00401-021-02284-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-021-02284-5

Keywords

Navigation