Skip to main content

Advertisement

Log in

Evidence of intraneuronal Aβ accumulation preceding tau pathology in the entorhinal cortex

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Growing evidence gathered from transgenic animal models of Alzheimer’s disease (AD) indicates that the intraneuronal accumulation of amyloid-β (Aβ) peptides is an early event in the AD pathogenesis, producing cognitive deficits before the deposition of insoluble plaques. Levels of soluble Aβ are also a strong indicator of synaptic deficits and concurrent AD neuropathologies in post-mortem AD brain; however, it remains poorly understood how this soluble amyloid pool builds within the brain in the decades leading up to diagnosis, when a patient is likely most amenable to early therapeutic interventions. Indeed, characterizing early intracellular Aβ accumulation in humans has been hampered by the lack of Aβ-specific antibodies, variability in the quality of available human brain tissue and the limitations of conventional microscopy. We therefore sought to investigate the development of the intraneuronal Aβ pathology using extremely high-quality post-mortem brain material obtained from a cohort of non-demented subjects with short post-mortem intervals and processed by perfusion-fixation. Using well-characterized monoclonal antibodies, we demonstrate that the age-dependent intraneuronal accumulation of soluble Aβ is pervasive throughout the entorhinal cortex and hippocampus, and that this phase of the amyloid pathology becomes established within AD-vulnerable regions before the deposition of Aβ plaques and the formation of tau neurofibrillary tangles. We also show for the first time in post-mortem human brain that Aβ oligomers do in fact accumulate intraneuronally, before the formation of extracellular plaques. Finally, we validated the origin of the Aβ-immunopositive pool by resolving Aβ- and APP/CTF-immunoreactive sites using super resolution structured illumination microscopy. Together, these findings indicate that the lifelong accrual of intraneuronal Aβ may be a potential trigger for downstream AD-related pathogenic events in early disease stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42:631–639

    Article  CAS  PubMed  Google Scholar 

  2. Bao F, Wicklund L, Lacor PN, Klein WL, Nordberg A, Marutle A (2012) Different beta-amyloid oligomer assemblies in Alzheimer brains correlate with age of disease onset and impaired cholinergic activity. Neurobiol Aging 33(825):e821

    Google Scholar 

  3. Billings LM, Oddo S, Green KN, McGaugh JL, LaFerla FM (2005) Intraneuronal Abeta causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron 45:675–688

    Article  CAS  PubMed  Google Scholar 

  4. Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404

    Article  PubMed  PubMed Central  Google Scholar 

  5. Braak H, Thal DR, Ghebremedhin E, Del Tredici K (2011) Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 70:960–969

    Article  CAS  PubMed  Google Scholar 

  6. Busciglio J, Pelsman A, Wong C, Pigino G, Yuan M, Mori H, Yankner BA (2002) Altered metabolism of the amyloid beta precursor protein is associated with mitochondrial dysfunction in Down’s syndrome. Neuron 33:677–688

    Article  CAS  PubMed  Google Scholar 

  7. Capetillo-Zarate E, Gracia L, Yu F, Banfelder JR, Lin MT, Tampellini D, Gouras GK (2011) High-resolution 3D reconstruction reveals intra-synaptic amyloid fibrils. Am J Pathol 179:2551–2558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chui DH, Tanahashi H, Ozawa K, Ikeda S, Checler F, Ueda O, Suzuki H, Araki W, Inoue H, Shirotani K et al (1999) Transgenic mice with Alzheimer presenilin 1 mutations show accelerated neurodegeneration without amyloid plaque formation. Nat Med 5:560–564

    Article  CAS  PubMed  Google Scholar 

  9. Cline EN, Bicca MA, Viola KL, Klein WL (2018) The amyloid-beta oligomer hypothesis: beginning of the third decade. J Alzheimers Dis 18:1–43

    Google Scholar 

  10. Cohen RM, Rezai-Zadeh K, Weitz TM, Rentsendorj A, Gate D, Spivak I, Bholat Y, Vasilevko V, Glabe CG, Breunig JJ et al (2013) A transgenic Alzheimer rat with plaques, tau pathology, behavioral impairment, oligomeric abeta, and frank neuronal loss. J Neurosci 33:6245–6256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cuello AC, Allard S, Ferretti MT (2012) Evidence for the accumulation of Abeta immunoreactive material in the human brain and in transgenic animal models. Life Sci 91:1141–1147

    Article  CAS  PubMed  Google Scholar 

  12. D’Andrea MR, Nagele RG, Gumula NA, Reiser PA, Polkovitch DA, Hertzog BM, Andrade-Gordon P (2002) Lipofuscin and Abeta42 exhibit distinct distribution patterns in normal and Alzheimer’s disease brains. Neurosci Lett 323:45–49

    Article  PubMed  Google Scholar 

  13. D’Andrea MR, Nagele RG, Wang HY, Lee DH (2002) Consistent immunohistochemical detection of intracellular beta-amyloid42 in pyramidal neurons of Alzheimer’s disease entorhinal cortex. Neurosci Lett 333:163–166

    Article  PubMed  Google Scholar 

  14. D’Andrea MR, Nagele RG, Wang HY, Peterson PA, Lee DH (2001) Evidence that neurones accumulating amyloid can undergo lysis to form amyloid plaques in Alzheimer’s disease. Histopathology 38:120–134

    Article  PubMed  Google Scholar 

  15. De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, Ferreira ST, Klein WL (2007) Abeta oligomers induce neuronal oxidative stress through an N-methyl-d-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem 282:11590–11601

    Article  CAS  PubMed  Google Scholar 

  16. De Felice FG, Wu D, Lambert MP, Fernandez SJ, Velasco PT, Lacor PN, Bigio EH, Jerecic J, Acton PJ, Shughrue PJ et al (2008) Alzheimer’s disease-type neuronal tau hyperphosphorylation induced by A beta oligomers. Neurobiol Aging 29:1334–1347

    Article  CAS  PubMed  Google Scholar 

  17. DeKosky ST, Scheff SW (1990) Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 27:457–464

    Article  CAS  PubMed  Google Scholar 

  18. Do Carmo S, Crynen G, Paradis T, Reed J, Iulita MF, Ducatenzeiler A, Crawford F, Cuello AC (2018) Hippocampal proteomic analysis reveals distinct pathway deregulation profiles at early and late stages in a rat model of Alzheimer’s-like amyloid pathology. Mol Neurobiol 55:3451–3476

    Article  CAS  PubMed  Google Scholar 

  19. Dodart JC, Bales KR, Gannon KS, Greene SJ, DeMattos RB, Mathis C, DeLong CA, Wu S, Wu X, Holtzman DM et al (2002) Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model. Nat Neurosci 5:452–457

    Article  CAS  PubMed  Google Scholar 

  20. Ferretti MT, Allard S, Partridge V, Ducatenzeiler A, Cuello AC (2012) Minocycline corrects early, pre-plaque neuroinflammation and inhibits BACE-1 in a transgenic model of Alzheimer’s disease-like amyloid pathology. J Neuroinflammation 9:62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ferretti MT, Partridge V, Leon WC, Canneva F, Allard S, Arvanitis DN, Vercauteren F, Houle D, Ducatenzeiler A, Klein WL et al (2011) Transgenic mice as a model of pre-clinical Alzheimer’s disease. Curr Alzheimer Res 8:4–23

    Article  CAS  PubMed  Google Scholar 

  22. Fowler SW, Chiang AC, Savjani RR, Larson ME, Sherman MA, Schuler DR, Cirrito JR, Lesne SE, Jankowsky JL (2014) Genetic modulation of soluble Abeta rescues cognitive and synaptic impairment in a mouse model of Alzheimer’s disease. J Neurosci 34:7871–7885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Goni F, Marta-Ariza M, Herline K, Peyser D, Boutajangout A, Mehta P, Drummond E, Prelli F, Wisniewski T (2018) Anti-beta-sheet conformation monoclonal antibody reduces tau and Abeta oligomer pathology in an Alzheimer’s disease model. Alzheimers Res Ther 10:10

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gouras GK, Tampellini D, Takahashi RH, Capetillo-Zarate E (2010) Intraneuronal beta-amyloid accumulation and synapse pathology in Alzheimer’s disease. Acta Neuropathol 119:523–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gouras GK, Tsai J, Naslund J, Vincent B, Edgar M, Checler F, Greenfield JP, Haroutunian V, Buxbaum JD, Xu H et al (2000) Intraneuronal Abeta42 accumulation in human brain. Am J Pathol 156:15–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gouras GK, Willen K, Tampellini D (2012) Critical role of intraneuronal Abeta in Alzheimer’s disease: technical challenges in studying intracellular Abeta. Life Sci 91:1153–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Grant SM, Ducatenzeiler A, Szyf M, Cuello AC (2000) Abeta immunoreactive material is present in several intracellular compartments in transfected, neuronally differentiated, P19 cells expressing the human amyloid beta-protein precursor. J Alzheimers Dis 2:207–222

    Article  CAS  PubMed  Google Scholar 

  28. Gyure KA, Durham R, Stewart WF, Smialek JE, Troncoso JC (2001) Intraneuronal abeta-amyloid precedes development of amyloid plaques in Down syndrome. Arch Pathol Lab Med 125:489–492

    CAS  PubMed  Google Scholar 

  29. Hanzel CE, Pichet-Binette A, Pimentel LS, Iulita MF, Allard S, Ducatenzeiler A, Do Carmo S, Cuello AC (2014) Neuronal driven pre-plaque inflammation in a transgenic rat model of Alzheimer’s disease. Neurobiol Aging 35:2249–2262

    Article  CAS  PubMed  Google Scholar 

  30. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  CAS  PubMed  Google Scholar 

  31. Iulita MF, Allard S, Richter L, Munter LM, Ducatenzeiler A, Weise C, Do Carmo S, Klein WL, Multhaup G, Cuello AC (2014) Intracellular Abeta pathology and early cognitive impairments in a transgenic rat overexpressing human amyloid precursor protein: a multidimensional study. Acta Neuropathol Commun 2:61

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, Shaw LM, Vemuri P, Wiste HJ, Weigand SD et al (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12:207–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Janelsins MC, Mastrangelo MA, Oddo S, LaFerla FM, Federoff HJ, Bowers WJ (2005) Early correlation of microglial activation with enhanced tumor necrosis factor-alpha and monocyte chemoattractant protein-1 expression specifically within the entorhinal cortex of triple transgenic Alzheimer’s disease mice. J Neuroinflammation 2:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kaden D, Harmeier A, Weise C, Munter LM, Althoff V, Rost BR, Hildebrand PW, Schmitz D, Schaefer M, Lurz R et al (2012) Novel APP/Abeta mutation K16 N produces highly toxic heteromeric Abeta oligomers. EMBO Mol Med 4:647–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kalus P, Braak H, Braak E, Bohl J (1989) The presubicular region in Alzheimer’s disease: topography of amyloid deposits and neurofibrillary changes. Brain Res 494:198–203

    Article  CAS  PubMed  Google Scholar 

  36. Kenigsberg RL, Cuello AC (1990) Production of a bi-specific monoclonal antibody recognizing mouse kappa light chains and horseradish peroxidase. Applications in immunoassays. Histochemistry 95:155–163

    Article  CAS  PubMed  Google Scholar 

  37. Koss DJ, Jones G, Cranston A, Gardner H, Kanaan NM, Platt B (2016) Soluble pre-fibrillar tau and beta-amyloid species emerge in early human Alzheimer’s disease and track disease progression and cognitive decline. Acta Neuropathol 132:875–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M, Viola KL, Klein WL (2007) Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27:796–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. LaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci 8:499–509

    Article  CAS  PubMed  Google Scholar 

  40. LaFerla FM, Troncoso JC, Strickland DK, Kawas CH, Jay G (1997) Neuronal cell death in Alzheimer’s disease correlates with apoE uptake and intracellular Abeta stabilization. J Clin Invest 100:310–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL et al (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 95:6448–6453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lambert MP, Velasco PT, Chang L, Viola KL, Fernandez S, Lacor PN, Khuon D, Gong Y, Bigio EH, Shaw P et al (2007) Monoclonal antibodies that target pathological assemblies of Abeta. J Neurochem 100:23–35

    Article  CAS  PubMed  Google Scholar 

  43. Lemere CA, Blusztajn JK, Yamaguchi H, Wisniewski T, Saido TC, Selkoe DJ (1996) Sequence of deposition of heterogeneous amyloid beta-peptides and APO E in Down syndrome: implications for initial events in amyloid plaque formation. Neurobiol Dis 3:16–32

    Article  CAS  PubMed  Google Scholar 

  44. Leon WC, Canneva F, Partridge V, Allard S, Ferretti MT, DeWilde A, Vercauteren F, Atifeh R, Ducatenzeiler A, Klein W et al (2010) A novel transgenic rat model with a full Alzheimer’s-like amyloid pathology displays pre-plaque intracellular amyloid-beta-associated cognitive impairment. J Alzheimers Dis 20:113–126

    Article  CAS  PubMed  Google Scholar 

  45. Li QX, Maynard C, Cappai R, McLean CA, Cherny RA, Lynch T, Culvenor JG, Trevaskis J, Tanner JE, Bailey KA et al (1999) Intracellular accumulation of detergent-soluble amyloidogenic A beta fragment of Alzheimer’s disease precursor protein in the hippocampus of aged transgenic mice. J Neurochem 72:2479–2487

    Article  CAS  PubMed  Google Scholar 

  46. Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, Beach T, Kurth JH, Rydel RE, Rogers J (1999) Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol 155:853–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Martino Adami PV, Quijano C, Magnani N, Galeano P, Evelson P, Cassina A, Do Carmo S, Leal MC, Castano EM, Cuello AC et al (2017) Synaptosomal bioenergetic defects are associated with cognitive impairment in a transgenic rat model of early Alzheimer’s disease. J Cereb Blood Flow Metab 37:69–84

    Article  PubMed  Google Scholar 

  48. McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush AI, Masters CL (1999) Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 46:860–866

    Article  CAS  PubMed  Google Scholar 

  49. Mena R, Wischik CM, Novak M, Milstein C, Cuello AC (1991) A progressive deposition of paired helical filaments (PHF) in the brain characterizes the evolution of dementia in Alzheimer’s disease. An immunocytochemical study with a monoclonal antibody against the PHF core. J Neuropathol Exp Neurol 50:474–490

    Article  CAS  PubMed  Google Scholar 

  50. Milstein C, Cuello AC (1983) Hybrid hybridomas and their use in immunohistochemistry. Nature 305:537–540

    Article  CAS  PubMed  Google Scholar 

  51. Mochizuki A, Tamaoka A, Shimohata A, Komatsuzaki Y, Shoji S (2000) Abeta42-positive non-pyramidal neurons around amyloid plaques in Alzheimer’s disease. Lancet 355:42–43

    Article  CAS  PubMed  Google Scholar 

  52. Mori C, Spooner ET, Wisniewsk KE, Wisniewski TM, Yamaguch H, Saido TC, Tolan DR, Selkoe DJ, Lemere CA (2002) Intraneuronal Abeta42 accumulation in Down syndrome brain. Amyloid 9:88–102

    Article  CAS  PubMed  Google Scholar 

  53. Nguyen DH, Zhou T, Shu J, and Mao JH (2013). Quantifying chromogen intensity in immunohistochemistry via reciprocal intensity. Cancer InCytes 2(1):e. http://www.cancerincytes.org/currentissue/letterfromtheeditorinchief.html#!quantifying-chromogen-intensity-in-immunohistochemistry-/c1vds

  54. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39:409–421

    Article  CAS  PubMed  Google Scholar 

  55. Prasher VP, Farrer MJ, Kessling AM, Fisher EM, West RJ, Barber PC, Butler AC (1998) Molecular mapping of Alzheimer-type dementia in Down’s syndrome. Ann Neurol 43:380–383

    Article  CAS  PubMed  Google Scholar 

  56. Qi Y, Klyubin I, Harney SC, Hu N, Cullen WK, Grant MK, Steffen J, Wilson EN, Do Carmo S, Remy S et al (2014) Longitudinal testing of hippocampal plasticity reveals the onset and maintenance of endogenous human Ass-induced synaptic dysfunction in individual freely behaving pre-plaque transgenic rats: rapid reversal by anti-Ass agents. Acta Neuropathol Commun 2:175

    Article  PubMed  PubMed Central  Google Scholar 

  57. Rumble B, Retallack R, Hilbich C, Simms G, Multhaup G, Martins R, Hockey A, Montgomery P, Beyreuther K, Masters CL (1989) Amyloid A4 protein and its precursor in Down’s syndrome and Alzheimer’s disease. N Engl J Med 320:1446–1452

    Article  CAS  PubMed  Google Scholar 

  58. Samuel W, Terry RD, DeTeresa R, Butters N, Masliah E (1994) Clinical correlates of cortical and nucleus basalis pathology in Alzheimer dementia. Arch Neurol 51:772–778

    Article  CAS  PubMed  Google Scholar 

  59. Savioz A, Giannakopoulos P, Herrmann FR, Klein WL, Kovari E, Bouras C, Giacobini E (2016) A study of abeta oligomers in the temporal cortex and cerebellum of patients with neuropathologically confirmed Alzheimer’s disease compared to aged controls. Neurodegener Dis 16:398–406

    Article  CAS  PubMed  Google Scholar 

  60. Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190:165–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Semenenko FM, Bramwell S, Sidebottom E, Cuello AC (1985) Development of a mouse antiperoxidase secreting hybridoma for use in the production of a mouse PAP complex for immunocytochemistry and as a parent cell line in the development of hybrid hybridomas. Histochemistry 83:405–408

    Article  CAS  PubMed  Google Scholar 

  63. Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL (2007) Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27:2866–2875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA et al (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14:837–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Skovronsky DM, Doms RW, Lee VM (1998) Detection of a novel intraneuronal pool of insoluble amyloid beta protein that accumulates with time in culture. J Cell Biol 141:1031–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Spires-Jones TL, Mielke ML, Rozkalne A, Meyer-Luehmann M, de Calignon A, Bacskai BJ, Schenk D, Hyman BT (2009) Passive immunotherapy rapidly increases structural plasticity in a mouse model of Alzheimer disease. Neurobiol Dis 33:213–220

    Article  CAS  PubMed  Google Scholar 

  67. Stern Y, Habeck C, Moeller J, Scarmeas N, Anderson KE, Hilton HJ, Flynn J, Sackeim H, van Heertum R (2005) Brain networks associated with cognitive reserve in healthy young and old adults. Cereb Cortex 15:394–402

    Article  PubMed  Google Scholar 

  68. Takahashi RH, Almeida CG, Kearney PF, Yu F, Lin MT, Milner TA, Gouras GK (2004) Oligomerization of Alzheimer’s beta-amyloid within processes and synapses of cultured neurons and brain. J Neurosci 24:3592–3599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Takahashi RH, Milner TA, Li F, Nam EE, Edgar MA, Yamaguchi H, Beal MF, Xu H, Greengard P, Gouras GK (2002) Intraneuronal Alzheimer abeta42 accumulates in multivesicular bodies and is associated with synaptic pathology. Am J Pathol 161:1869–1879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Takahashi RH, Nagao T, Gouras GK (2017) Plaque formation and the intraneuronal accumulation of beta-amyloid in Alzheimer’s disease. Pathol Int 67:185–193

    Article  CAS  PubMed  Google Scholar 

  71. Thal DR, Rub U, Orantes M, Braak H (2002) Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800

    Article  PubMed  Google Scholar 

  72. Thal DR, Rub U, Schultz C, Sassin I, Ghebremedhin E, Del Tredici K, Braak E, Braak H (2000) Sequence of Abeta-protein deposition in the human medial temporal lobe. J Neuropathol Exp Neurol 59:733–748

    Article  CAS  PubMed  Google Scholar 

  73. Tomiyama T, Matsuyama S, Iso H, Umeda T, Takuma H, Ohnishi K, Ishibashi K, Teraoka R, Sakama N, Yamashita T et al (2010) A mouse model of amyloid beta oligomers: their contribution to synaptic alteration, abnormal tau phosphorylation, glial activation, and neuronal loss in vivo. J Neurosci 30:4845–4856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Toth K, Eross L, Vajda J, Halasz P, Freund TF, Magloczky Z (2010) Loss and reorganization of calretinin-containing interneurons in the epileptic human hippocampus. Brain 133:2763–2777

    Article  PubMed  PubMed Central  Google Scholar 

  75. Townsend M, Shankar GM, Mehta T, Walsh DM, Selkoe DJ (2006) Effects of secreted oligomers of amyloid beta-protein on hippocampal synaptic plasticity: a potent role for trimers. J Physiol 572:477–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Turner RS, Suzuki N, Chyung AS, Younkin SG, Lee VM (1996) Amyloids beta40 and beta42 are generated intracellularly in cultured human neurons and their secretion increases with maturation. J Biol Chem 271:8966–8970

    Article  CAS  PubMed  Google Scholar 

  77. Walsh DM, Selkoe DJ (2004) Oligomers on the brain: the emerging role of soluble protein aggregates in neurodegeneration. Protein Pept Lett 11:213–228

    Article  CAS  PubMed  Google Scholar 

  78. Wegiel J, Wisniewski HM, Dziewiatkowski J, Badmajew E, Tarnawski M, Reisberg B, Mlodzik B, De Leon MJ, Miller DC (1999) Cerebellar atrophy in Alzheimer’s disease-clinicopathological correlations. Brain Res 818:41–50

    Article  CAS  PubMed  Google Scholar 

  79. Wertkin AM, Turner RS, Pleasure SJ, Golde TE, Younkin SG, Trojanowski JQ, Lee VM (1993) Human neurons derived from a teratocarcinoma cell line express solely the 695-amino acid amyloid precursor protein and produce intracellular beta-amyloid or A4 peptides. Proc Natl Acad Sci USA 90:9513–9517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wirths O, Multhaup G, Czech C, Blanchard V, Moussaoui S, Tremp G, Pradier L, Beyreuther K, Bayer TA (2001) Intraneuronal Abeta accumulation precedes plaque formation in beta-amyloid precursor protein and presenilin-1 double-transgenic mice. Neurosci Lett 306:116–120

    Article  CAS  PubMed  Google Scholar 

  81. Wischik CM, Novak M, Thogersen HC, Edwards PC, Runswick MJ, Jakes R, Walker JE, Milstein C, Roth M, Klug A (1988) Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci USA 85:4506–4510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wisniewski HM, Sadowski M, Jakubowska-Sadowska K, Tarnawski M, Wegiel J (1998) Diffuse, lake-like amyloid-beta deposits in the parvopyramidal layer of the presubiculum in Alzheimer disease. J Neuropathol Exp Neurol 57:674–683

    Article  CAS  PubMed  Google Scholar 

  83. Zempel H, Thies E, Mandelkow E, Mandelkow EM (2010) Abeta oligomers cause localized Ca(2 +) elevation, missorting of endogenous Tau into dendrites, Tau phosphorylation, and destruction of microtubules and spines. J Neurosci 30:11938–11950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research is supported by the CIHR Project Grant PJT-364544 to A. Claudio Cuello, and 2017-1.2.1-NKP-2017-00002 to the Human Brain Research lab. LAW is the recipient of a Doctoral Training Fellowship from the Fonds de recherche du Québec-Santé. SDC is the holder of the Charles E. Frosst/Merck Research Associate position. ACC is the holder of the McGill University Charles E. Frosst/Merck Chair in Pharmacology and is a member of the Canadian Consortium on Neurodegeneration in Aging. We would like to thank Dr. William Klein (Northwestern University) as well as Dr. Gerhard Multhaup (McGill University) for generously providing the NU1 and pab27576 antibodies, respectively. We thank Dr. Alfredo Ribeiro-da-Silva for allowing us to use the Axio Imager M2 widefield microscope and for his guidance and assistance in acquiring the images presented above. We would also like to acknowledge Dr. Elke Küster-Schöck and the McGill University Cell Imaging and Analysis Network for their help with super resolution microscopy. The Cuello laboratory is grateful for the unrestricted support received from Dr. Alan Frosst, the Frosst family, and Merck Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Claudio Cuello.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

401_2018_1922_MOESM1_ESM.pdf

Supplemental Fig. 1 Neuronal accumulation of Aβ within the EC is ubiquitous across all non-demented cases. All control cases examined displayed appreciable iAβ accumulation across all entorhinal layers, regardless of concurrent Aβ plaque pathologies. One subject with diagnosed-AD (DEM1) also exhibited iAβ accumulation in the MTL, although McSA1-IR neurons within the EC were sparse due to extensive plaque pathology and neurodegeneration. Subjects are arranged in order of increasing neuronal McSA1-IR (scale bar = 200μm). Supplementary material 1 (PDF 1282 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Welikovitch, L.A., Do Carmo, S., Maglóczky, Z. et al. Evidence of intraneuronal Aβ accumulation preceding tau pathology in the entorhinal cortex. Acta Neuropathol 136, 901–917 (2018). https://doi.org/10.1007/s00401-018-1922-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-018-1922-z

Keywords

Navigation