Skip to main content

Advertisement

Log in

The genetic landscape of gliomas arising after therapeutic radiation

  • Original Article
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Radiotherapy improves survival for common childhood cancers such as medulloblastoma, leukemia, and germ cell tumors. Unfortunately, long-term survivors suffer sequelae that can include secondary neoplasia. Gliomas are common secondary neoplasms after cranial or craniospinal radiation, most often manifesting as high-grade astrocytomas with poor clinical outcomes. Here, we performed genetic profiling on a cohort of 12 gliomas arising after therapeutic radiation to determine their molecular pathogenesis and assess for differences in genomic signature compared to their spontaneous counterparts. We identified a high frequency of TP53 mutations, CDK4 amplification or CDKN2A homozygous deletion, and amplifications or rearrangements involving receptor tyrosine kinase and Ras–Raf–MAP kinase pathway genes including PDGFRA, MET, BRAF, and RRAS2. Notably, all tumors lacked alterations in IDH1, IDH2, H3F3A, HIST1H3B, HIST1H3C, TERT (including promoter region), and PTEN, which genetically define the major subtypes of diffuse gliomas in children and adults. All gliomas in this cohort had very low somatic mutation burden (less than three somatic single nucleotide variants or small indels per Mb). The ten high-grade gliomas demonstrated markedly aneuploid genomes, with significantly increased quantity of intrachromosomal copy number breakpoints and focal amplifications/homozygous deletions compared to spontaneous high-grade gliomas, likely as a result of DNA double-strand breaks induced by gamma radiation. Together, these findings demonstrate a distinct molecular pathogenesis of secondary gliomas arising after radiation therapy and identify a genomic signature that may aid in differentiating these tumors from their spontaneous counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agnihotri S, Suppiah S, Tonge PD et al (2017) Therapeutic radiation for childhood cancer drives structural aberrations of NF2 in meningiomas. Nat Commun 8:186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alexandrov LB, Nik-Zainal S, Wedge DC et al (2013) Signatures of mutational processes in human cancer. Nature 500:415–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Behjati S, Gundem G, Wedge DC et al (2016) Mutational signatures of ionizing radiation in second malignancies. Nat Commun 7:12605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brachman D, Hallahan D, Beckett M, Yandell D, Weichselbaum R (1991) p53 gene mutations and abnormal retinoblastoma protein in radiation-induced human sarcomas. Cancer Res 51:6393–6396

    CAS  PubMed  Google Scholar 

  5. Brat DJ, James CD, Jedlicka AE et al (1999) Molecular genetic alterations in radiation-induced astrocytomas. Am J Pathol 154:1431–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cahan W, Woodard H, Higinbotham N, Stewart F, Coley B (1948) Sarcoma arising in irradiated bone: report of eleven cases. Cancer 82:8–34

    Article  Google Scholar 

  7. Camacho CV, Todorova PK, Hardebeck MC et al (2015) DNA double-strand breaks cooperate with loss of Ink4 and Arf tumor suppressors to generate glioblastomas with frequent Met amplification. Oncogene 34:1064–1072

    Article  CAS  PubMed  Google Scholar 

  8. Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068

    Article  CAS  Google Scholar 

  9. Cancer Genome Atlas Research Network (2013) The somatic genomic landscape of glioblastoma. Cell 155:462–477

    Article  CAS  Google Scholar 

  10. Cancer Genome Atlas Research Network (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372:2481–2498

    Article  CAS  Google Scholar 

  11. Chowdhary A, Spence AM, Sales L, Rostomily RC, Rockhill JK, Silbergeld DL (2012) Radiation associated tumors following therapeutic cranial radiation. Surg Neurol Int 3:48

    Article  PubMed  PubMed Central  Google Scholar 

  12. Donson AM, Erwin NS, Kleinschmidt-DeMasters BK, Madden JR, Addo-Yobo SO, Foreman NK (2007) Unique molecular characteristics of radiation-induced glioblastoma. J Neuropathol Exp Neurol 66:740–749

    Article  CAS  PubMed  Google Scholar 

  13. Eckel-Passow JE, Lachance DH, Molinaro AM et al (2015) Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 372:2499–2508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fontebasso AM, Schwartzentruber J, Khuong-Quang DA et al (2013) Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric high-grade gliomas. Acta Neuropathol 125:659–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Foray N (2016) Victor Despeignes, the forgotten pioneer of radiation oncology. Int J Radiat Oncol Biol Phys 96:717–721

    Article  PubMed  Google Scholar 

  16. Henson JW, Hobbs W, Chakravarti A, Louis DN (2005) Alterations in p53, p21, and MIB-1 labeling index in primary human astrocytomas following radiation therapy. J Neurooncol 74:151–154

    Article  CAS  PubMed  Google Scholar 

  17. Iorgulescu JB, Van Ziffle J, Stevers M et al (2018) Deep sequencing of WNT-activated medulloblastomas reveals secondary SHH pathway activation. Acta Neuropathol 135:635–638

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kline CN, Joseph NM, Grenert JP et al (2017) Targeted next-generation sequencing of pediatric neuro-oncology patients improves diagnosis, identifies pathogenic germline mutations, and directs targeted therapy. Neuro-Oncol 19:699–709

    CAS  PubMed  Google Scholar 

  19. Mackay A, Burford A, Carvalho D et al (2017) Integrated molecular meta-analysis of 1000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell 32:520–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nakao T, Sasagawa Y, Nobusawa S et al (2017) Radiation-induced gliomas: a report of four cases and analysis of molecular biomarkers. Brain Tumor Pathol 34:149–154

    Article  PubMed  Google Scholar 

  21. Paugh BS, Qu C, Jones C et al (2010) Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J Clin Oncol 28:3061–3068

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pekmezci M, Stevers M, Phillips JJ et al (2018) Multinodular and vacuolating neuronal tumor of the cerebrum is a clonal neoplasm defined by genetic alterations that activate the MAP kinase signaling pathway. Acta Neuropathol 135:485–488

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pekmezci M, Villanueva-Meyer JE, Goode B et al (2018) The genetic landscape of ganglioglioma. Acta Neuropathol Commun 6:47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Phi JH, Park AK, Lee S et al (2018) Genomic analysis reveals secondary glioblastoma after radiotherapy in a subset of recurrent medulloblastomas. Acta Neuropathol 135:939–953

    Article  CAS  PubMed  Google Scholar 

  25. Phillips JJ, Gong H, Chen K et al (2016) Activating NRF1-BRAF and ATG7-RAF1 fusions in anaplastic pleomorphic xanthoastrocytoma without BRAF p. V600E mutation. Acta Neuropathol 132:757–760

    Article  PubMed  PubMed Central  Google Scholar 

  26. Phillips JJ, Gong H, Chen K, Joseph NM, van Ziffle J, Bastian BC, Grenert JP, Kline CN, Mueller S, Banerjee A, Nicolaides T, Gupta N, Berger MS, Lee HS, Pekmezci M, Tihan T, Bollen AW, Perry A, Shieh JTC, Solomon DA (2018) The genetic landscape of anaplastic pleomorphic xanthoastrocytoma. Brain Pathol. https://doi.org/10.1111/bpa.12639

  27. Rodriguez FJ, Schniederjan MJ, Nicolaides T, Tihan T, Burger PC, Perry A et al (2015) High rate of concurrent BRAF-KIAA1549 gene fusion and 1p deletion in disseminated oligodendroglioma-like leptomeningeal neoplasms (DOLN). Acta Neuropathol 129:609–610

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sahm F, Toprak UH, Hübschmann D et al (2017) Meningiomas induced by low-dose radiation carry structural variants of NF2 and a distinct mutational signature. Acta Neuropathol 134:155–158

    Article  CAS  PubMed  Google Scholar 

  29. Salvati M, D’Elia A, Melone GA et al (2008) Radio-induced gliomas: 20-year experience and critical review of the pathology. J Neurooncol 89:169–177

    Article  PubMed  Google Scholar 

  30. Solomon DA, Wood MD, Tihan T et al (2016) Diffuse midline gliomas with histone H3-K27M mutation: a series of 47 cases assessing the spectrum of morphologic variation and associated genetic alterations. Brain Pathol 26:569–580

    Article  CAS  PubMed  Google Scholar 

  31. Walter AW, Hancock ML, Pui CH et al (1998) Secondary brain tumors in children treated for acute lymphoblastic leukemia at St Jude Children’s Research Hospital. J Clin Oncol 16:3761–3767

    Article  CAS  PubMed  Google Scholar 

  32. Wu G, Diaz AK, Paugh BS et al (2014) The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 46:444–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yamanaka R, Hayano A, Kanayama T (2018) Radiation-induced gliomas: a comprehensive review and meta-analysis. Neurosurg Rev 41:719–731

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

G.Y.L is supported by the National Cancer Institute Training Program in Translational Brain Tumor Research (T32 CA151022). B.C.B. is supported by an NCI Outstanding Investigator Award (R35 CA220481). D.A.S. is supported by the National Institutes of Health Director’s Early Independence Award (DP5 OD021403) and the UCSF Physician-Scientist Scholar Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Solomon.

Ethics declarations

Ethical approval

This study was approved by the Committee on Human Research of the University of California, San Francisco, with a waiver of patient consent.

Conflict of interest

The authors declare that they have no competing interests related to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 68 kb)

Supplementary material 2 (PDF 11779 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López, G.Y., Van Ziffle, J., Onodera, C. et al. The genetic landscape of gliomas arising after therapeutic radiation. Acta Neuropathol 137, 139–150 (2019). https://doi.org/10.1007/s00401-018-1906-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-018-1906-z

Keywords

Navigation