Skip to main content

Advertisement

Log in

Molecular profiling of long-term survivors identifies a subgroup of glioblastoma characterized by chromosome 19/20 co-gain

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Glioblastoma (GBM) is a devastating tumor and few patients survive beyond 3 years. Defining the molecular determinants underlying long-term survival is essential for insights into tumor biology and biomarker identification. We therefore investigated homogeneously treated, IDH wt long-term (LTS, n = 10) and short-term survivors (STS, n = 6) by microarray transcription profiling. While there was no association of clinical parameters and molecular subtypes with long-term survival, STS tumors were characterized by differential polarization of infiltrating microglia with predominance of the M2 phenotype detectable both on the mRNA and protein level. Furthermore, transcriptional signatures of LTS and STS predicted patient outcome in a large, IDH wt cohort (n = 468). Interrogation of overlapping genomic alterations identified concurrent gain of chromosomes 19 and 20 as a favorable prognostic marker. The strong association of this co-gain with survival was validated by aCGH in a second, independent cohort (n = 124). Finally, FISH and gene expression data revealed gains to constitute low-amplitude, clonal events with a strong impact on transcription. In conclusion, these findings provide important insights into the manipulation of the innate immune system by particularly aggressive GBM tumors. Furthermore, we genomically characterize a previously unknown, clinically relevant subgroup of glioblastoma, which can easily be identified through modern neuropathological workup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alvarez S, MacGrogan D, Calasanz MJ, Nimer SD, Jhanwar SC (2001) Frequent gain of chromosome 19 in megakaryoblastic leukemias detected by comparative genomic hybridization. Genes Chromosom Cancer 32:285–293

    Article  CAS  PubMed  Google Scholar 

  2. Brennan CW, Verhaak RGW, McKenna A, Campos B, Noushmehr H, Salama SR et al (2013) The somatic genomic landscape of glioblastoma. Cell 155:462–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Burton EC, Lamborn KR, Feuerstein BG, Prados M, Scott J, Forsyth P et al (2002) Genetic aberrations defined by comparative genomic hybridization distinguish long-term from typical survivors of glioblastoma. Cancer Res 62:6205–6210

    CAS  PubMed  Google Scholar 

  4. Burton EC, Lamborn KR, Forsyth P, Scott J, O’Campo J, Uyehara-Lock J et al (2002) Aberrant p53, mdm2, and proliferation differ in glioblastomas from long-term compared with typical survivors. Clin Cancer Res 8:180–187

    CAS  PubMed  Google Scholar 

  5. Capper D, Zentgraf H, Balss J, Hartmann C, Von Deimling A (2009) Monoclonal antibody specific for IDH1 R132H mutation. Acta Neuropathol 118:599–601

    Article  CAS  PubMed  Google Scholar 

  6. Carro MS, Lim WK, Alvarez MJ, Bollo RJ, Zhao X, Snyder EY et al (2010) The transcriptional network for mesenchymal transformation of brain tumours. Nature 463:318–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Colman H, Zhang L, Sulman EP, McDonald JM, Shooshtari NL, Rivera A et al (2010) A multigene predictor of outcome in glioblastoma. Neurooncology 12:49–57

    CAS  Google Scholar 

  8. Cooper LAD, Gutman DA, Chisolm C, Appin C, Kong J, Rong Y et al (2012) The tumor microenvironment strongly impacts master transcriptional regulators and gene expression class of glioblastoma. Am J Pathol 180:2108–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Da Fonseca ACC, Romão L, Amaral RF, Assad Kahn S, Lobo D, Martins S et al (2012) Microglial stress inducible protein 1 promotes proliferation and migration in human glioblastoma cells. Neuroscience 200:130–141

    Article  PubMed  CAS  Google Scholar 

  10. Davis S, Meltzer PS (2007) GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 23:1846–1847

    Article  PubMed  CAS  Google Scholar 

  11. Debus J, Abdollahi A (2014) For the next trick: new discoveries in radiobiology applied to glioblastoma. Am Soc Clin Oncol Educ Book 34:95–99

    Article  Google Scholar 

  12. Deloukas P, Matthews LH, Ashurst J, Burton J, Gilbert JG, Jones M et al (2001) The DNA sequence and comparative analysis of human chromosome 20. Nature 414:865–871

    Article  CAS  PubMed  Google Scholar 

  13. Donson AM, Birks DK, Schittone SA, Kleinschmidt-DeMasters BK, Sun DY, Hemenway MF et al (2012) Increased immune gene expression and immune cell infiltration in high-grade astrocytoma distinguish long-term from short-term survivors. J Immunol 189:1920–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Engler JR, Robinson AE, Smirnov I, Hodgson JG, Berger MS, Gupta N et al (2012) Increased microglia/macrophage gene expression in a subset of adult and pediatric astrocytomas. PLoS One 7:e43339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Freije WA, Castro-Vargas FE, Fang Z, Horvath S, Cloughesy T, Liau LM et al (2004) Gene expression profiling of gliomas strongly predicts survival. Cancer Res 64:6503–6510

    Article  CAS  PubMed  Google Scholar 

  16. Gerber NK, Goenka A, Turcan S, Reyngold M, Makarov V, Kannan K et al (2014) Transcriptional diversity of long-term glioblastoma survivors. Neurooncology 16:1186–1195

    Google Scholar 

  17. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E et al (2012) Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing. N Engl J Med 366:883–892

    Article  CAS  PubMed  Google Scholar 

  18. Glass R, Synowitz M (2014) CNS macrophages and peripheral myeloid cells in brain tumours. Acta Neuropathol 128:347–362

    Article  CAS  PubMed  Google Scholar 

  19. Greaves M, Maley CC (2012) Clonal evolution in cancer. Nature 481:306–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grimwood J, Gordon LA, Olsen A, Terry A, Schmutz J, Lamerdin J et al (2004) The DNA sequence and biology of human chromosome 19. Nature 428:529–535

    Article  CAS  PubMed  Google Scholar 

  21. Hartmann C, Hentschel B, Simon M, Westphal M, Schackert G, Tonn JC et al (2013) Long-term survival in primary glioblastoma with versus without isocitrate dehydrogenase mutations. Clin Cancer Res 19:5146–5157

    Article  CAS  PubMed  Google Scholar 

  22. Hartmann C, Meyer J, Balss J, Capper D, Mueller W, Christians A et al (2009) Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol 118:469–474

    Article  PubMed  Google Scholar 

  23. Heimberger AB, Hlatky R, Suki D, Yang D, Weinberg J, Gilbert M et al (2005) Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients. Clin Cancer Res 11:1462–1466

    Article  CAS  PubMed  Google Scholar 

  24. Houillier C, Lejeune J, Benouaich-Amiel A, Laigle-Donadey F, Criniere E, Mokhtari K et al (2006) Prognostic impact of molecular markers in a series of 220 primary glioblastomas. Cancer 106:2218–2223

    Article  CAS  PubMed  Google Scholar 

  25. Hovestadt V, Remke M, Kool M, Pietsch T, Northcott PA, Fischer R et al (2013) Robust molecular subgrouping and copy-number profiling of medulloblastoma from small amounts of archival tumour material using high-density DNA methylation arrays. Acta Neuropathol 125:913–916

    Article  PubMed  PubMed Central  Google Scholar 

  26. Huber W, von Heydebreck A, Sültmann H, Poustka A, Vingron M (2002) Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18(Suppl 1):S96–104

    Article  PubMed  Google Scholar 

  27. Jones DTW, Ichimura K, Liu L, Pearson DM, Plant K, Collins VP (2006) Genomic analysis of pilocytic astrocytomas at 0.97 Mb resolution shows an increasing tendency toward chromosomal copy number change with age. J Neuropathol Exp Neurol 65:1049–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kees T, Lohr J, Noack J, Mora R, Gdynia G, Tödt G et al (2012) Microglia isolated from patients with glioma gain antitumor activities on poly (I:C) stimulation. Neurooncology 14:64–78

    CAS  Google Scholar 

  29. Kim Y-W, Koul D, Kim SH, Lucio-Eterovic AK, Freire PR, Yao J et al (2013) Identification of prognostic gene signatures of glioblastoma: a study based on TCGA data analysis. Neurooncology 15:829–839

    CAS  Google Scholar 

  30. Komohara Y, Ohnishi K, Kuratsu J, Takeya M (2008) Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J Pathol 216:15–24

    Article  CAS  PubMed  Google Scholar 

  31. Krex D, Klink B, Hartmann C, von Deimling A, Pietsch T, Simon M et al (2007) Long-term survival with glioblastoma multiforme. Brain 130:2596–2606

    Article  PubMed  Google Scholar 

  32. Li B, Senbabaoglu Y, Peng W, Yang M-L, Xu J, Li JZ (2012) Genomic estimates of aneuploid content in glioblastoma multiforme and improved classification. Clin Cancer Res 18:5595–5605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lichter P, Bentz M, Joos S (1995) Detection of chromosomal aberrations by means of molecular cytogenetics: painting of chromosomes and chromosomal subregions and comparative genomic hybridization. Methods Enzymol 254:334–359

    Article  CAS  PubMed  Google Scholar 

  34. Lohr J, Ratliff T, Huppertz A, Ge Y, Dictus C, Ahmadi R et al (2011) Effector T-cell infiltration positively impacts survival of glioblastoma patients and is impaired by tumor-derived TGF-β. Clin Cancer Res 17:4296–4308

    Article  CAS  PubMed  Google Scholar 

  35. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  PubMed  PubMed Central  Google Scholar 

  36. Marko NF, Toms SA, Barnett GH, Weil R (2008) Genomic expression patterns distinguish long-term from short-term glioblastoma survivors: a preliminary feasibility study. Genomics 91:395–406

    Article  CAS  PubMed  Google Scholar 

  37. Martinez FO, Gordon S, Locati M, Mantovani A (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177:7303–7311

    Article  CAS  PubMed  Google Scholar 

  38. McCabe MG, Ichimura K, Liu L, Plant K, Bäcklund LM, Pearson DM et al (2006) High-resolution array-based comparative genomic hybridization of medulloblastomas and supratentorial primitive neuroectodermal tumors. J Neuropathol Exp Neurol 65:549–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McLendon RE, Halperin EC (2003) Is the long-term survival of patients with intracranial glioblastoma multiforme overstated? Cancer 98:1745–1748

    Article  PubMed  Google Scholar 

  40. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nishie A, Ono M, Shono T, Fukushi J, Otsubo M, Onoue H et al (1999) Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas. Clin Cancer Res 5:1107–1113

    CAS  PubMed  Google Scholar 

  42. Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP et al (2010) Identification of a CpG Island Methylator Phenotype that Defines a Distinct Subgroup of Glioma. Cancer Cell 17:510–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Petalidis LP, Oulas A, Backlund M, Wayland MT, Liu L, Plant K et al (2008) Improved grading and survival prediction of human astrocytic brain tumors by artificial neural network analysis of gene expression microarray data. Mol Cancer Ther 7:1013–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173

    Article  CAS  PubMed  Google Scholar 

  45. Prosniak M, Harshyne LA, Andrews DW, Kenyon LC, Bedelbaeva K, Apanasovich TV et al (2013) Glioma grade is associated with the accumulation and activity of cells bearing M2 monocyte markers. Clin Cancer Res 19:3776–3786

    Article  CAS  PubMed  Google Scholar 

  46. Reifenberger G, Weber RG, Riehmer V, Kaulich K, Willscher E, Wirth H et al (2014) Molecular characterization of long-term survivors of glioblastoma using genome- and transcriptome-wide profiling. Int J Cancer 135:1822–1831

    Article  CAS  PubMed  Google Scholar 

  47. Shinawi T, Hill VK, Krex D, Schackert G, Gentle D, Morris MR et al (2013) DNA methylation profiles of long- and short-term glioblastoma survivors. Epigenetics 8:149–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shinojima N, Tada K, Shiraishi S, Kamiryo T, Kochi M, Nakamura H et al (2003) Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res 63:6962–6970

    CAS  PubMed  Google Scholar 

  49. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJB, Janzer RC et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466

    Article  CAS  PubMed  Google Scholar 

  50. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  PubMed  Google Scholar 

  51. Sturm D, Bender S, Jones DTW, Lichter P, Grill J, Becher O et al (2014) Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge. Nat Rev Cancer 14:92–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sturm D, Witt H, Hovestadt V, Khuong-Quang D-A, Jones DTW, Konermann C et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22:425–437

    Article  CAS  PubMed  Google Scholar 

  53. The R Development Core Team (2008) R: a language and environment for statistical computing

  54. Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E et al (2012) IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483:479–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al (2010) Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wesolowska A, Kwiatkowska A, Slomnicki L, Dembinski M, Master A, Sliwa M et al (2008) Microglia-derived TGF-beta as an important regulator of glioblastoma invasion–an inhibition of TGF-beta-dependent effects by shRNA against human TGF-beta type II receptor. Oncogene 27:918–930

    Article  CAS  PubMed  Google Scholar 

  57. Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim S-H et al (2011) Oncometabolite 2-Hydroxyglutarate Is a Competitive Inhibitor of α-Ketoglutarate-Dependent Dioxygenases. Cancer Cell 19:17–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yamanaka R, Arao T, Yajima N, Tsuchiya N, Homma J, Tanaka R et al (2006) Identification of expressed genes characterizing long-term survival in malignant glioma patients. Oncogene 25:5994–6002

    Article  CAS  PubMed  Google Scholar 

  59. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Steffen Dettling and Saskia Rösch for proofreading of the manuscript as well as Anja Metzner and Daniela Zito for review of patient data. Furthermore, we thank Farzaneh Kashfi, Hildegard Göltzer, Ilka Hearn and Melanie Greibich as well as Barbara Schwager and Claudia Rittmüller for their excellent technical assistance. This study has been funded in part by a grant from the Anni Hofmann Stiftung to CHM and the German Federal Ministry of Research and Education (BMBF) to BB (01GS0883).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christel Herold-Mende.

Additional information

C. Geisenberger, A. Mock, A. Abdollahi and C. Herold-Mende have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

401_2015_1427_MOESM1_ESM.pdf

Fig. S1 TCGA subtypes in LTS/STS discovery cohort. Fig. S2 Principal Component Analysis of LTS and STS gene expression data. Fig. S3 Microglial infiltration in LTS and STS tumors. Fig. S4 Correlation of TCGA expression data and microglia signature. Fig. S5 Survival for combined „LTS-like“-status and chr. 19/20 co-gain. Fig. S6 Study cohort for chromosome 19/20 FISH validation (PDF 968 kb)

Table S1 Detailed patient information for LTS and STS study cohort (XLSX 12 kb)

Table S2 Genes used for classification of TCGA cohort (XLSX 47 kb)

Table S3 Expression differences between LTS and STS in the discovery cohort (XLSX 56 kb)

Table S4 Metacore results for genes upregulated in LTS (XLSX 34 kb)

Table S5 Metacore results for genes upregulated in STS (XLSX 1574 kb)

Table S6 Metacore results for genes upregulated in LTS-like samples (XLS 56 kb)

Table S7 Metacore results for genes upregulated in STS-like samples (XLSX 53 kb)

Table S8 Mutation enrichment in TCGA for LTS- and STS-like samples (XLS 54 kb)

Table S9 CNA enrichment in TCGA for LTS- and STS-like samples (XLS 63 kb)

Table S10 Clinical data for aCGH validation cohort (XLSX 291 kb)

Table S11 FISH analysis for LTS in discovery cohort (XLSX 933 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geisenberger, C., Mock, A., Warta, R. et al. Molecular profiling of long-term survivors identifies a subgroup of glioblastoma characterized by chromosome 19/20 co-gain. Acta Neuropathol 130, 419–434 (2015). https://doi.org/10.1007/s00401-015-1427-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-015-1427-y

Keywords

Navigation