Skip to main content
Log in

Expression of EAAT-1 distinguishes choroid plexus tumors from normal and reactive choroid plexus epithelium

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Microscopic distinction of normal choroid plexus (CP) from choroid plexus tumors (CPT) may be difficult, especially in small samples of well-differentiated CP papillomas. So far, there are no established markers that reliably distinguish normal and neoplastic CP epithelium. Recently, a correlation between expression/function of glial glutamate transporters EAAT-1 (GLAST) and EAAT-2 (Glt-1) and tumor proliferation has been reported. Furthermore, we previously found that CPTs frequently express EAAT-1, but not EAAT-2. We now compared expression of EAAT-1, EAAT-2 and GFAP in non-neoplastic CP (n = 68) and CPT (n = 79) by immunohistochemistry. Tissue of normal CP was obtained from 50 autopsy cases (20 normal and 30 pathologic brains) and 18 neurosurgical specimens that included 17 fetal, 21 pediatric and 30 adult cases. In non-neoplastic postnatal CP (n = 51), focal expression of EAAT-1 was found in only two pediatric cases (4%). In CPT, expression of EAAT-1 was found in 64 of 79 (81%) tumor samples and was significantly age-dependent (P < 0.0001). Hence, EAAT-1 expression distinguishes neoplastic from normal CP, both in children (P = 0.0032) and in adults (P < 0.0001). Immunostaining for EAAT-2 in selected samples from cases of different ages showed that normal CP (n = 15) or CPT (n = 16) lacked EAAT-2 expression. GFAP expression was found in 3 of 32 (10%) normal CP and in 28 of 73 (38%) tumor samples. In conclusion, in contrast to neoplastic CP samples, expression of EAAT-1 is exceptionally rare in non-neoplastic CP. Thus, EAAT-1 is superior to GFAP as a helpful diagnostic tool in CP samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Beschorner R, Dietz K, Schauer N et al (2007) Expression of EAAT1 reflects a possible neuroprotective function of reactive astrocytes and activated microglia following human traumatic brain injury. Histol Histopathol 22:515–526

    PubMed  CAS  Google Scholar 

  2. Beschorner R, Pantazis G, Schittenhelm J, Meyermann R (2008) Membranous expression of EAAT-1 distinguishes neoplastic from normal choroid plexus epithelium. Acta Neuropathol 116:340

    Google Scholar 

  3. Beschorner R, Schittenhelm J, Schimmel H et al (2006) Choroid plexus tumors differ from metastatic carcinomas by expression of the excitatory amino acid transporter-1. Hum Pathol 37:854–860

    Article  PubMed  CAS  Google Scholar 

  4. Beschorner R, Simon P, Schauer N et al (2007) Reactive astrocytes and activated microglial cells express EAAT1, but not EAAT2, reflecting a neuroprotective potential following ischaemia. Histopathol 50:897–910

    Article  CAS  Google Scholar 

  5. Bjornsen LP, Eid T, Holmseth S, Danbolt NC, Spencer DD, de Lanerolle NC (2007) Changes in glial glutamate transporters in human epileptogenic hippocampus: inadequate explanation for high extracellular glutamate during seizures. Neurobiol Dis 25:319–330

    Article  PubMed  CAS  Google Scholar 

  6. Bonnin JM, Colon LE, Morawetz RB (1987) Focal glial differentiation and oncocytic transformation in choroid plexus papilloma. Acta Neuropathol 72:277–280

    Article  PubMed  CAS  Google Scholar 

  7. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  8. Catala M (1998) Embryonic and fetal development of structures associated with the cerebro-spinal fluid in man and other species Part I: the ventricular system, meninges and choroid plexuses. Arch Anat Cytol Pathol 46:153–169

    PubMed  CAS  Google Scholar 

  9. Chretien F, Vallat-Decouvelaere AV, Bossuet C et al (2002) Expression of excitatory amino acid transporter-2 (EAAT-2) and glutamine synthetase (GS) in brain macrophages and microglia of SIVmac251-infected macaques. Neuropathol Appl Neurobiol 28:410–417

    Article  PubMed  CAS  Google Scholar 

  10. Ciceroni C, Arcella A, Mosillo P et al (2008) Type-3 metabotropic glutamate receptors negatively modulate bone morphogenetic protein receptor signaling and support the tumourigenic potential of glioma-initiating cells. Neuropharmacol 55:568–576

    Article  CAS  Google Scholar 

  11. Duan S, Anderson CM, Stein BA, Swanson RA (1999) Glutamate induces rapid upregulation of astrocyte glutamate transport and cell-surface expression of GLAST. J Neurosci 19:10193–10200

    PubMed  CAS  Google Scholar 

  12. Dziegielewska KM, Evans CAN, New H, Reynolds ML, Saunders NR (1984) Synthesis of plasma proteins by rat fetal brain and choroid plexus. Int J Dev Neurosci 2:215–222

    Article  CAS  Google Scholar 

  13. Figarella-Branger D, Lepidi H, Poncet C et al (1995) Differential expression of cell adhesion molecules (CAM), neural CAM and epithelial cadherin in ependymomas and choroid plexus tumors. Acta Neuropathol 89:248–257

    Article  PubMed  CAS  Google Scholar 

  14. Gandhi R, Luk KC, Rymar VV, Sadikot AF (2008) Group I mGluR5 metabotropic glutamate receptors regulate proliferation of neuronal progenitors in specific forebrain developmental domains. J Neurochem 104:155–172

    PubMed  CAS  Google Scholar 

  15. Gaudio RM, Tacconi L, Rossi ML (1998) Pathology of choroid plexus papillomas: a review. Clin Neurol Neurosurg 100:165–186

    Article  PubMed  CAS  Google Scholar 

  16. Hasselblatt M, Böhm C, Tatenhorst L et al (2006) Identification of novel diagnostic markers for choroid plexus tumors: a microarray-based approach. Am J Surg Pathol 30:66–74

    Article  PubMed  Google Scholar 

  17. Haugeto O, Ullensvang K, Levy LM et al (1996) Brain glutamate transporter proteins form homomultimers. J Biol Chem 271:27715–27722

    Article  PubMed  CAS  Google Scholar 

  18. Hurtado O, Moro MA, Cardenas A et al (2005) Neuroprotection afforded by prior citicoline administration in experimental brain ischemia: effects on glutamate transport. Neurobiol Dis 18:336–345

    Article  PubMed  CAS  Google Scholar 

  19. Jacobsen M, Jacobsen GK, Clausen PP, Saunders NR, Mollgard K (1982) Intracellular plasma proteins in human fetal choroid plexus during development. II. The distribution of prealbumin, albumin, alpha-fetoprotein, transferrin, IgG, IgA, IgM, and alpha 1-antitrypsin. Brain Res 255:251–262

    PubMed  CAS  Google Scholar 

  20. Jeibmann A, Hasselblatt M, Gerss J et al (2006) Prognostic implications of atypical histologic features in choroid plexus papilloma. J Neuropathol Exp Neurol 65:1069–1073

    Article  PubMed  Google Scholar 

  21. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  22. Lee SG, Su ZZ, Emdad L et al (2008) Mechanism of ceftriaxone induction of excitatory amino acid transporter-2 expression and glutamate uptake in primary human astrocytes. J Biol Chem 283:13116–13123

    Article  PubMed  CAS  Google Scholar 

  23. Longatti P, Basaldella L, Orvieto E, Dei TA, Martinuzzi A (2006) Aquaporin(s) expression in choroid plexus tumours. Pediatr Neurosurg 42:228–233

    Article  PubMed  Google Scholar 

  24. Lopez-Bayghen E, Ortega A (2004) Glutamate-dependent transcriptional regulation of GLAST: role of PKC. J Neurochem 91:200–209

    Article  PubMed  CAS  Google Scholar 

  25. Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  PubMed  Google Scholar 

  26. Luk KC, Kennedy TE, Sadikot AF (2003) Glutamate promotes proliferation of striatal neuronal progenitors by an NMDA receptor-mediated mechanism. J Neurosci 23:2239–2250

    PubMed  CAS  Google Scholar 

  27. Mori T, Tateishi N, Kagamiishi Y et al (2004) Attenuation of a delayed increase in the extracellular glutamate level in the peri-infarct area following focal cerebral ischemia by a novel agent ONO-2506. Neurochem Int 45:381–387

    Article  PubMed  CAS  Google Scholar 

  28. Nakamura Y, Becker LE, Marks A (1983) Distribution of immunoreactive S-100 protein in pediatric brain tumors. J Neuropathol Exp Neurol 42:136–145

    Article  PubMed  CAS  Google Scholar 

  29. Newcombe J, Uddin A, Dove R et al (2008) Glutamate receptor expression in multiple sclerosis lesions. Brain Pathol 18:52–61

    Article  PubMed  Google Scholar 

  30. Paulus W, Brandner S (2007) Choroid plexus tumours. In: Louis DN, Ohgaki H, Wiestler OD, Webster KC (eds) WHO classification of tumours of the central nervous system. IARC, Lyon, pp 81–86

    Google Scholar 

  31. Redzic ZB, Preston JE, Duncan JA, Chodobski A, Szmydynger-Chodobska J (2005) The choroid plexus-cerebrospinal fluid system: from development to aging. Curr Top Dev Biol 71:1–52

    Article  PubMed  CAS  Google Scholar 

  32. Rothstein JD, Patel S, Regan MR et al (2005) Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433:73–77

    Article  PubMed  CAS  Google Scholar 

  33. Rozyczka J, Figiel M, Engele J (2004) Endothelins negatively regulate glial glutamate transporter expression. Brain Pathol 14:406–414

    PubMed  CAS  Google Scholar 

  34. Rzeski W, Ikonomidou C, Turski L (2002) Glutamate antagonists limit tumor growth. Biochem Pharmacol 64:1195–1200

    Article  PubMed  CAS  Google Scholar 

  35. Schmidt T, Landwehrmeyer GB, Schmitt I et al (1998) An isoform of ataxin-3 accumulates in the nucleus of neuronal cells in affected brain regions of SCA3 patients. Brain Pathol 8:669–679

    Article  PubMed  CAS  Google Scholar 

  36. Sheldon AL, Robinson MB (2007) The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int 51:333–355

    Article  PubMed  CAS  Google Scholar 

  37. Shimada F, Shiga Y, Morikawa M et al (1999) The neuroprotective agent MS-153 stimulates glutamate uptake. Eur J Pharmacol 386:263–270

    Article  PubMed  CAS  Google Scholar 

  38. Sugiyama T, Sadzuka Y (1999) Combination of theanine with doxorubicin inhibits hepatic metastasis of M5076 ovarian sarcoma. Clin Cancer Res 5:413–416

    PubMed  CAS  Google Scholar 

  39. Sugiyama T, Sadzuka Y (2003) Theanine and glutamate transporter inhibitors enhance the antitumor efficacy of chemotherapeutic agents. Biochim Biophys Acta 1653:47–59

    PubMed  CAS  Google Scholar 

  40. Vanhoutte N, Hermans E (2008) Glutamate-induced glioma cell proliferation is prevented by functional expression of the glutamate transporter GLT-1. FEBS Lett 582:1847–1852

    Article  PubMed  CAS  Google Scholar 

  41. Varga Z, Vajtai I, Aguzzi A (1996) The standard isoform of CD44 is preferentially expressed in atypical papillomas and carcinomas of the choroid plexus. Pathol Res Pract 192:1225–1231

    PubMed  CAS  Google Scholar 

  42. Voutsinos-Porche B, Knott G, Tanaka K, Quairiaux C, Welker E, Bonvento G (2003) Glial glutamate transporters and maturation of the mouse somatosensory cortex. Cereb Cortex 13:1110–1121

    Article  PubMed  Google Scholar 

  43. Williams SM, Sullivan RK, Scott HL et al (2005) Glial glutamate transporter expression patterns in brains from multiple mammalian species. Glia 49:520–541

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors thank Prof. Shigehisa Hirose for providing the Kir 7.1 antibody, Katrin Trautmann and Thorsten Schmidt for excellent technical assistance, and Elisabeth Rushing for her help with the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudi Beschorner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beschorner, R., Pantazis, G., Jeibmann, A. et al. Expression of EAAT-1 distinguishes choroid plexus tumors from normal and reactive choroid plexus epithelium. Acta Neuropathol 117, 667–675 (2009). https://doi.org/10.1007/s00401-009-0519-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-009-0519-y

Keywords

Navigation