Skip to main content
Log in

Devicebasiertes Telemonitoring

Aktuelle Studienlage

Device-based remote monitoring

Current evidence

  • Schwerpunkt
  • Published:
Herzschrittmachertherapie + Elektrophysiologie Aims and scope Submit manuscript

Zusammenfassung

Devicebasierte telemedizinische Behandlungsmöglichkeiten halten weiter Einzug in die Kardiologie. Sie betreffen die frühzeitige Erkennung von Arrhythmien, die Kontrolle der Devicefunktion oder auch die Steuerung und Optimierung der Herzinsuffizienztherapie. Die besten Daten existieren aktuell für die telemedizinisch unterstützte technische Devicenachsorge. In verschiedenen Studien konnte die Belastung des Gesundheitssystems in Form von ambulanten Kontrollen oder stationären Aufenthalten und die Zeit vom Auftreten der Fehlfunktion bis zur Erkennung durch den betreuenden Arzt signifikant reduziert werden. Auch die Rate an inadäquaten ICD-Therapien (ICD: implantierbarer Kardioverter-Defibrillator) kann durch den Einsatz der Telemedizin reduziert werden. Anhand von retrospektiven Daten und Metaanalysen ist die telemedizinische Nachsorge von Patienten auch mit einer reduzierten Mortalität assoziiert. Die devicebasierte Detektion von Vorhofflimmern und atrialen Hochfrequenzepisoden ist technisch möglich. Die Relevanz dieser Technologien und die daraus folgenden medizinischen Interventionen werden aktuell in randomisierten Studien untersucht. In der telemedizinisch gestützten Therapie der Herzinsuffizienz verbesserten Interventionen auf Basis von Surrogatparametern das Outcome nicht relevant, allerdings konnte die Therapiesteuerung basierend auf der Messung des pulmonalarteriellen Drucks Morbidität und Mortalität signifikant senken. Diese Übersichtsarbeit bietet eine Zusammenfassung der aktuellen Datenlage zur devicebasierten telemedizinisch gestützten Nachsorge und Therapie.

Abstract

Telemedicine is increasingly used in clinical cardiology. It offers early detection of arrhythmias, technical device follow-up and support of heart failure management. Regarding technical device follow-up, remote monitoring significantly reduces usage of the health care system. Furthermore, remote monitoring is associated with a significantly reduced time from device malfunction to physician’s perception of the event. Using remote monitoring, inappropriate ICD (implantable cardioverter defibrillator) shocks can be significantly reduced compared to routine in-office follow-up. In retrospective studies and meta-analyses a prognostic benefit with respect to mortality has been shown. Device-based detection of atrial fibrillation and atrial high rate episodes is feasible. However, clinical relevance is currently studied in prospective randomized clinical trials. Heart failure management based on surrogate parameters has not been shown to significantly improve outcome. However, therapeutic management based on pulmonary artery pressure has been shown to significantly reduce morbidity and mortality. This review offers a comprehensive overview on the role of remote monitoring in heart failure management, technical device follow-up and detection of atrial fibrillation and atrial high rate episodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Abraham WT, Adamson PB, Bourge RC et al (2011) Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet 377:658–666. https://doi.org/10.1016/S0140-6736(11)60101-3

    Article  PubMed  Google Scholar 

  2. Abraham WT, Adamson PB, Costanzo MR et al (2016) Hemodynamic monitoring in advanced heart failure: results from the LAPTOP-HF trial. J Card Fail 22:940. https://doi.org/10.1016/j.cardfail.2016.09.012

    Article  Google Scholar 

  3. Abraham WT, Stevenson LW, Bourge RC et al (2016) Sustained efficacy of pulmonary artery pressure to guide adjustment of chronic heart failure therapy: complete follow-up results from the CHAMPION randomised trial. Lancet 387:453–461. https://doi.org/10.1016/S0140-6736(15)00723-0

    Article  PubMed  Google Scholar 

  4. Adamson PB, Abraham WT, Bourge RC et al (2014) Wireless pulmonary artery pressure monitoring guides management to reduce decompensation in heart failure with preserved ejection fraction. Circ Heart Fail 7:935–944. https://doi.org/10.1161/circheartfailure.113.001229

    Article  PubMed  Google Scholar 

  5. Al-Khatib SM, Piccini JP, Knight D et al (2010) Remote monitoring of implantable cardioverter defibrillators versus quarterly device interrogations in clinic: results from a randomized pilot clinical trial. J Cardiovasc Electrophysiol 21:545–550. https://doi.org/10.1111/j.1540-8167.2009.01659.x

    Article  PubMed  Google Scholar 

  6. Amara W, Montagnier C, Cheggour S et al (2017) Early detection and treatment of atrial arrhythmias alleviates the Arrhythmic burden in paced patients: the SETAM study. Pacing Clin Electrophysiol 40:527–536. https://doi.org/10.1111/pace.13062

    Article  PubMed  Google Scholar 

  7. Boehmer JP, Hariharan R, Devecchi FG et al (2017) A multisensor algorithm predicts heart failure events in patients with implanted devices: results from the multiSENSE study. JACC Heart Fail 5:216–225. https://doi.org/10.1016/j.jchf.2016.12.011

    Article  PubMed  Google Scholar 

  8. Boriani G, Da Costa A, Quesada A et al (2017) Effects of remote monitoring on clinical outcomes and use of healthcare resources in heart failure patients with biventricular defibrillators: results of the MORE-CARE multicentre randomized controlled trial. Eur J Heart Fail 19:416–425. https://doi.org/10.1002/ejhf.626

    Article  PubMed  Google Scholar 

  9. Boriani G, Da Costa A, Ricci RP et al (2013) The MOnitoring Resynchronization dEvices and CARdiac patiEnts (MORE-CARE) randomized controlled trial: phase 1 results on dynamics of early intervention with remote monitoring. J Med Internet Res 15:e167. https://doi.org/10.2196/jmir.2608

    Article  PubMed  PubMed Central  Google Scholar 

  10. Botto GL, Padeletti L, Santini M et al (2009) Presence and duration of atrial fibrillation detected by continuous monitoring: crucial implications for the risk of thromboembolic events. J Cardiovasc Electrophysiol 20:241–248. https://doi.org/10.1111/j.1540-8167.2008.01320.x

    Article  PubMed  Google Scholar 

  11. Bourge RC, Abraham WT, Adamson PB et al (2008) Randomized controlled trial of an implantable continuous hemodynamic monitor in patients with advanced heart failure: the COMPASS-HF study. J Am Coll Cardiol 51:1073–1079. https://doi.org/10.1016/j.jacc.2007.10.061

    Article  PubMed  Google Scholar 

  12. Böhm M, Drexler H, Oswald H et al (2016) Fluid status telemedicine alerts for heart failure: a randomized controlled trial. Eur Heart J 37:3154–3163. https://doi.org/10.1093/eurheartj/ehw099

    Article  PubMed  Google Scholar 

  13. Brambatti M, Connolly SJ, Gold MR et al (2014) Temporal relationship between subclinical atrial fibrillation and embolic events. Circulation 129:2094–2099. https://doi.org/10.1161/circulationaha.113.007825

    Article  PubMed  Google Scholar 

  14. Brignole M, Auricchio A, Barón-Esquivias G et al (2013) 2013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy: the Task Force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). Eur Heart J 34:2281–2329. https://doi.org/10.1093/eurheartj/eht150

    Article  PubMed  Google Scholar 

  15. Chaudhry SI, Mattera JA, Curtis JP et al (2010) Telemonitoring in patients with heart failure. N Engl J Med 363:2301–2309. https://doi.org/10.1056/NEJMoa1010029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Crossley GH, Boyle A, Vitense H et al (2011) The CONNECT (Clinical Evaluation of Remote Notification to Reduce Time to Clinical Decision) trial: the value of wireless remote monitoring with automatic clinician alerts. J Am Coll Cardiol 57:1181–1189. https://doi.org/10.1016/j.jacc.2010.12.012

    Article  PubMed  Google Scholar 

  17. Dubner S, Auricchio A, Steinberg JS et al (2012) ISHNE/EHRA expert consensus on remote monitoring of cardiovascular implantable electronic devices (CIEDs). Europace 14:278–293. https://doi.org/10.1093/europace/eur303

    Article  PubMed  Google Scholar 

  18. Duncker D, König T, Hohmann S et al (2017) Avoiding untimely Implantable Cardioverter/Defibrillator implantation by intensified heart failure therapy optimization supported by the wearable Cardioverter/Defibrillator-the PROLONG study. J Am Heart Assoc. https://doi.org/10.1161/JAHA.116.004512

    PubMed  PubMed Central  Google Scholar 

  19. Duncker D, Veltmann C (2016) The wearable cardioverter/defibrillator – toy or tool? J Atr Fibrillation 8:1367. https://doi.org/10.4022/jafib.1367

    PubMed  PubMed Central  Google Scholar 

  20. Glotzer TV, Hellkamp AS, Zimmerman J et al (2003) Atrial high rate episodes detected by pacemaker diagnostics predict death and stroke: report of the Atrial Diagnostics Ancillary Study of the MOde Selection Trial (MOST). Circulation 107:1614–1619. https://doi.org/10.1161/01.CIR.0000057981.70380.45

    Article  PubMed  Google Scholar 

  21. Gorenek B, Bax J, Boriani G, Chen S-A, Dagres N, Glotzer TV, Healey JS, Israel CW, Kudaiberdieva G, Levin L-A, Lip GYH, Martin D, Okumura K, Svendsen JH, Tse H-F, Botto GL (2017) Device-detected subclinical atrial tachyarrhythmias: definition, implications and management—an European Heart Rhythm Association (EHRA) consensus document, endorsed by Heart RhythmSociety (HRS), Asia Pacific Heart Rhythm Society (APHRS) and Sociedad Latinoamericana de Estimulacion Cardíaca y Electrofisiología (SOLEACE) Europace (in press), https://doi.org/10.1093/europace/eux163

  22. Guédon-Moreau L, Lacroix D, Sadoul N et al (2013) A randomized study of remote follow-up of implantable cardioverter defibrillators: safety and efficacy report of the ECOST trial. Eur Heart J 34:605–614. https://doi.org/10.1093/eurheartj/ehs425

    Article  PubMed  Google Scholar 

  23. Hart RG, Pearce LA (2009) Current status of stroke risk stratification in patients with atrial fibrillation. Stroke 40:2607–2610. https://doi.org/10.1161/STROKEAHA.109.549428

    Article  PubMed  Google Scholar 

  24. Healey JS, Connolly SJ, Gold MR et al (2012) Subclinical atrial fibrillation and the risk of stroke. N Engl J Med 366:120–129. https://doi.org/10.1056/NEJMoa1105575

    Article  CAS  PubMed  Google Scholar 

  25. Hindricks G, Camm AJ, Merkely B et al (2016) The EHRA White Book 2016, S 1–558

  26. Hindricks G, Taborsky M, Glikson M et al (2014) Implant-based multiparameter telemonitoring of patients with heart failure (IN-TIME): a randomised controlled trial. Lancet 384:583–590. https://doi.org/10.1016/S0140-6736(14)61176-4

    Article  PubMed  Google Scholar 

  27. Hindricks G, Varma N, Kacet S et al (2017) Daily remote monitoring of implantable cardioverter-defibrillators: insights from the pooled patient-level data from three randomized controlled trials (IN-TIME, ECOST, TRUST). Eur Heart J 38:1749–1755. https://doi.org/10.1093/eurheartj/ehx015

    Article  PubMed Central  Google Scholar 

  28. Kirchhof P, Benussi S, Kotecha D et al (2016) 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J 37:2893–2962. https://doi.org/10.1093/eurheartj/ehw210

    Article  PubMed  Google Scholar 

  29. Koehler F, Winkler S, Schieber M et al (2011) Impact of remote telemedical management on mortality and hospitalizations in ambulatory patients with chronic heart failure: the telemedical interventional monitoring in heart failure study. Circulation 123:1873–1880. https://doi.org/10.1161/CIRCULATIONAHA.111.018473

    Article  PubMed  Google Scholar 

  30. Krivoshei L, Weber S, Burkard T et al (2017) Smart detection of atrial fibrillation. Europace 19:753–757. https://doi.org/10.1093/europace/euw125

    PubMed  Google Scholar 

  31. Landolina M, Perego GB, Lunati M et al (2012) Remote monitoring reduces healthcare use and improves quality of care in heart failure patients with implantable defibrillators: the evolution of management strategies of heart failure patients with implantable defibrillators (EVOLVO) study. Circulation 125:2985–2992. https://doi.org/10.1161/CIRCULATIONAHA.111.088971

    Article  PubMed  Google Scholar 

  32. Lüthje L, Vollmann D, Seegers J et al (2015) A randomized study of remote monitoring and fluid monitoring for the management of patients with implanted cardiac arrhythmia devices. Europace 17:1276–1281. https://doi.org/10.1093/europace/euv039

    Article  PubMed  Google Scholar 

  33. Martin DT, Bersohn MM, Waldo AL et al (2015) Randomized trial of atrial arrhythmia monitoring to guide anticoagulation in patients with implanted defibrillator and cardiac resynchronization devices. Eur Heart J 36:1660–1668. https://doi.org/10.1093/eurheartj/ehv115

    Article  PubMed  Google Scholar 

  34. Müller A, Rybak K, Klingenheben T et al (2013) Recommendations for telemonitoring in patients with implanted pace makers, defibrillators, and cardiac resynchronization systems. Kardiologe 7:181–193. https://doi.org/10.1007/s12181-013-0496-1

    Article  Google Scholar 

  35. Ong MK, Romano PS, Edgington S et al (2016) Effectiveness of remote patient monitoring after discharge of hospitalized patients with heart failure: the Better Effectiveness After Transition – Heart Failure (BEAT-HF) randomized clinical trial. JAMA Intern Med 176:310–318. https://doi.org/10.1001/jamainternmed.2015.7712

    Article  PubMed  PubMed Central  Google Scholar 

  36. Podd SJ, Sugihara C, Furniss SS, Sulke N (2016) Are implantable cardiac monitors the „gold standard“ for atrial fibrillation detection? A prospective randomized trial comparing atrial fibrillation monitoring using implantable cardiac monitors and DDDRP permanent pacemakers in post atrial fibrillation ablation patients. Europace 18:1000–1005. https://doi.org/10.1093/europace/euv367

    Article  PubMed  Google Scholar 

  37. Portugal G, Cunha P, Valente B et al (2016) Influence of remote monitoring on long-term cardiovascular outcomes after cardioverter-defibrillator implantation. Int J Cardiol 222:764–768. https://doi.org/10.1016/j.ijcard.2016.07.157

    Article  PubMed  Google Scholar 

  38. Raatikainen MJP, Arnar DO, Merkely B et al (2016) Access to and clinical use of cardiac implantable electronic devices and interventional electrophysiological procedures in the European Society of Cardiology Countries: 2016 Report from the European Heart Rhythm Association. Europace 18(Suppl 3):iii79–iii1. https://doi.org/10.1093/europace/euw244

    Google Scholar 

  39. Ricci RP, Morichelli L, D’Onofrio A et al (2013) Effectiveness of remote monitoring of CIEDs in detection and treatment of clinical and device-related cardiovascular events in daily practice: the HomeGuide Registry. Europace 15:970–977. https://doi.org/10.1093/europace/eus440

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ricci RP, Vaccari D, Morichelli L et al (2016) Stroke incidence in patients with cardiac implantable electronic devices remotely controlled with automatic alerts of atrial fibrillation. A sub-analysis of the HomeGuide study. Int J Cardiol 219:251–256. https://doi.org/10.1016/j.ijcard.2016.06.016

    Article  PubMed  Google Scholar 

  41. Sanna T, Diener H‑C, Passman RS et al (2014) Cryptogenic stroke and underlying atrial fibrillation. N Engl J Med 370:2478–2486. https://doi.org/10.1056/NEJMoa1313600

    Article  CAS  PubMed  Google Scholar 

  42. Saxon LA, Hayes DL, Gilliam FR et al (2010) Long-term outcome after ICD and CRT implantation and influence of remote device follow-up: the ALTITUDE survival study. Circulation 122:2359–2367. https://doi.org/10.1161/CIRCULATIONAHA.110.960633

    Article  PubMed  Google Scholar 

  43. Shanmugam N, Boerdlein A, Proff J et al (2012) Detection of atrial high-rate events by continuous home monitoring: clinical significance in the heart failure-cardiac resynchronization therapy population. Europace 14:230–237. https://doi.org/10.1093/europace/eur293

    Article  PubMed  Google Scholar 

  44. Slotwiner D, Varma N, Akar JG et al (2015) HRS Expert Consensus Statement on remote interrogation and monitoring for cardiovascular implantable electronic devices. Heart Rhythm 12:e69–100. https://doi.org/10.1016/j.hrthm.2015.05.008

    Article  PubMed  Google Scholar 

  45. Van Gelder IC, Healey JS, Crijns HJGM et al (2017) Duration of device-detected subclinical atrial fibrillation and occurrence of stroke in ASSERT. Eur Heart J 38:1339–1344. https://doi.org/10.1093/eurheartj/ehx042

    Article  PubMed  Google Scholar 

  46. Van Veldhuisen DJ, Braunschweig F, Conraads V et al (2011) Intrathoracic impedance monitoring, audible patient alerts, and outcome in patients with heart failure. Circulation 124:1719–1726. https://doi.org/10.1161/CIRCULATIONAHA.111.043042

    Article  PubMed  Google Scholar 

  47. Varma N, Epstein AE, Irimpen A et al (2010) Efficacy and safety of automatic remote monitoring for implantable cardioverter-defibrillator follow-up: the Lumos-T Safely Reduces Routine Office Device Follow-up (TRUST) trial. Circulation 122:325–332. https://doi.org/10.1161/CIRCULATIONAHA.110.937409

    Article  PubMed  Google Scholar 

  48. Wang L (2007) Fundamentals of intrathoracic impedance monitoring in heart failure. Am J Cardiol 99:3G–10G. https://doi.org/10.1016/j.amjcard.2007.02.009

    Article  PubMed  Google Scholar 

  49. Yu CM, Wang L, Chau E et al (2005) Intrathoracic impedance monitoring in patients with heart failure: correlation with fluid status and feasibility of early warning preceding hospitalization. Circulation 112:841–848. https://doi.org/10.1161/CIRCULATIONAHA.104.492207

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Veltmann.

Ethics declarations

Interessenkonflikt

D. Duncker: Vortragshonorare, Reiseunterstützung, Fellowship von Biotronik, Boston Scientific, Medtronic, Sorin/LivaNova, St. Jude Medical/Abbott, Zoll. R. Michalski: Fellowship St. Jude Medical. T. König: Vortragshonorare, Reiseunterstützung, Fellowship von Biotronik, Boston Scientific, Medtronic, Sorin/LivaNova. C. Veltmann: Vortragshonorare, Reiseunterstützung, Beratungstätigkeit von Biotronik, Boston Scientific, Medtronic, St. Jude Medical/Abbott, Zoll. J. Müller-Leisse und C. Zormpas geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duncker, D., Michalski, R., Müller-Leisse, J. et al. Devicebasiertes Telemonitoring. Herzschr Elektrophys 28, 268–278 (2017). https://doi.org/10.1007/s00399-017-0521-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00399-017-0521-3

Schlüsselwörter

Keywords

Navigation