Skip to main content
Log in

A hierarchical algorithm for predicting the linear viscoelastic properties of polymer melts with long-chain branching

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The “hierarchical model” proposed earlier [Larson in Macromolecules 34:4556–4571, 2001] is herein modified by inclusion of early time fluctuations and other refinements drawn from the theories of Milner and McLeish for more quantitative prediction. The hierarchical model predictions are then compared with experimental linear viscoelastic data of well-defined long chain branched 1,4-polybutadienes and 1,4-polyisoprenes using a single set of parameter values for each polymer, which are obtained from experimental data for monodisperse linear and star polymers. For a wide range of monodisperse branched polymer melts, the predictions of the hierarchical model for monodisperse melts are very similar to those of the Milner–McLeish theories, and agree well with experimental data for many, but not all, of the branched polymer samples. Since the modified hierarchical model accounts for arbitrary polydispersity in molecular weight and branching distributions, which is not accounted for in the Milner–McLeish theories, the hierarchical algorithm is a promising one for predicting the relaxation of general mixtures of branched polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Crosby BJ, Mangnus M, de Groot W, Daniels R, McLeish TCB (2002) Characterization of long chain branching: dilution rheology of industrial polyethylenes. J Rheol 46:401–426

    Article  CAS  Google Scholar 

  2. Daniels DR, McLeish TCB, Crosby BJ, Young RN, Fernyhough CM (2001) Molecular rheology of comb polymer melts. 1. Linear viscoelastic response. Macromolecules 34:7025–7033

    Article  CAS  Google Scholar 

  3. Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  4. Fettets LJ, Kiss AD, Pearson DS, Quack GF, Vitus FJ (1993) Rheological behavior of star-shaped polymers. Macromolecules 26:647–654

    Google Scholar 

  5. Fetters LJ, Lohse DJ, Richter D, Witten TA, Zirkel A (1994) Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties. Macromolecules 27:4639–4647

    Google Scholar 

  6. Frischknecht AL, Milner ST (2000) Self-Diffusion with dynamic dilution in star polymer melts. Macromolecules 33:9764–9768

    Article  CAS  Google Scholar 

  7. Frischknecht AL, Milner ST, Pryke A, Young RN, Hawkins R, McLeish TCB (2002) Rheology of three-arm asymmetric star polymer melts. Macromolecules 35:4801–4820

    Article  CAS  Google Scholar 

  8. Gabriel C, Münstedt H (2002) Influence of long-chain branches in polyethylenes on linear viscoelastic flow properties in shear. Rheol Acta 41:232–244

    Article  CAS  Google Scholar 

  9. Gahleitner M (2001) Melt rheology of polyolefins. Prog Polym Sci 26:895–944

    Article  CAS  Google Scholar 

  10. Gotro JT, Graessley WW (1984) Model hydrocarbon polymers: rheological properties of linear polyisoprenes and hydrogenated polyisoprenes. Macromolecules 17:2767–2775

    CAS  Google Scholar 

  11. Janzen J, Colby RH (1999) Diagnosing long-chain branching in polyethylenes. J Mol Struct 485–486:569–583

    Article  Google Scholar 

  12. Kratochvil P (2000) Characterization of branched polymers. Macromol Symp 152:279–287

    Article  CAS  Google Scholar 

  13. Larson RG (2001) Combinatorial rheology of branched polymer melts. Macromolecules 34:4556–4571

    Article  CAS  Google Scholar 

  14. Larson RG, Sridhar T, Leal LG, McKinley GH, Likhtman AE, McLeish TCB (2003) Definitions of entanglement spacing and time constants in the tube model. J Rheol 47:809–818

    Article  CAS  Google Scholar 

  15. McLeish TCB (2003) Why, and when, does dynamic tube dilation work for stars? J Rheol 47:177–198

    Article  CAS  Google Scholar 

  16. McLeish TCB, Larson RG (1998) Molecular constitutive equations for a class of branched polymers: the pom-pom polymer. J Rheol 42:82–112

    Article  Google Scholar 

  17. McLeish TCB, Allgaier J, Bick DK, Bishko G, Biswas P, Blackwell R, Blottiere B, Clarke N, Gibbs B, Groves DJ, Hakiki A, Heenan RK, Johnson JM, Kant R, Read DJ, Young RN (1999) Dynamics of entangled H-polymers: theory, rheology, and neutron-scattering. Macromolecules 32:6734–6758

    Article  CAS  Google Scholar 

  18. Milner ST, McLeish TCB (1997) Parameter-free theory for stress relaxation in star polymer melts. Macromolecules 30:2159–2166

    Article  CAS  Google Scholar 

  19. Milner ST, McLeish TCB (1998) Reptation and contour-length fluctuations in melts of linear polymers. Phys Rev Lett 81:725–728

    Article  CAS  Google Scholar 

  20. Milner ST, McLeish TCB, Young RN, Hakiki A, Johnson JM (1998) Dynamic dilution, constraint-release, and star-linear blends. Macromolecules 31:9345–9353

    Article  CAS  Google Scholar 

  21. Park SJ, Larson RG (2003) Dilution exponent in the dynamic dilution theory for polymer melts. J Rheol 47:199–211

    Article  CAS  Google Scholar 

  22. Park SJ, Larson RG (2004) Tube dilation and reptation in binary blends of monodisperse linear polymers. Macromolecules 37:597–604

    Article  CAS  Google Scholar 

  23. Pearson DS, Mueller SJ, Fetters LJ, Hadjichristidis NJ (1983) Comparison of the rheological properties of linear and star-branched polyisoprenes in shear and elongational flow. Polym Sci Polym Phys Ed 21:2287–2298

    Article  CAS  Google Scholar 

  24. Raju VR, Menezes EV, Marin G, Graessley WW (1981) Concentration and molecular weight dependence of viscoelastic properties in linear and star polymers. Macromolecules 14:1668–1676

    CAS  Google Scholar 

  25. Randall JC (1989) A review of high-resolution liquid C-13 nuclear magnetic-resonance characterizations of ethylene based polymers. J Macromol Sci Rev Macromol Chem Phys C29:201–317

    CAS  Google Scholar 

  26. Roovers J (1985) Properties of the plateau zone of star-branched polybutadienes and polystyrenes. Polymer 26:1091–1095

    Article  CAS  Google Scholar 

  27. Roovers J (1987) Tube renewal in the relaxation of 4-arm star polybutadienes in linear polybutadienes. Macromolecules 20:148–152

    CAS  Google Scholar 

  28. Shanbhag S, Larson RG (2004) A slip-link model of branch-point motion in entangled polymers. Macromolecules (in press)

  29. Shroff RN, Mavridis H (2001) Assessment of NMR and rheology for the characterization of LCB in essentially linear polyethylenes. Macromolecules 34:7362–7367

    Article  CAS  Google Scholar 

  30. Struglinski MJ, Graessley WW (1985) Effects of polydispersity on the linear viscoelastic properties of entangled polymers. 1. Experimental observations for binary mixtures of linear polybutadiene. Macromolecules 18:2630–2643

    CAS  Google Scholar 

  31. Struglinski MJ, Graessley WW, Fetters LJ (1988) Effects of polydispersity on the linear viscoelastic properties of entangled polymers. 3. Experimental observations on binary mixtures of linear and star polybutadienes. Macromolecules 21:783–789

    CAS  Google Scholar 

  32. Watanabe H, Matsumiya Y, Inoue T (2002) Dielectric and viscoelastic relaxation of highly-entangled star polyisoprene; quantitative test of tube dilation model. Macromolecules 35:2339–2357

    Article  CAS  Google Scholar 

  33. Wood-Adams PM, Dealy JM (2000) Using rheological data to determine the branching level in metallocene polyethylenes. Macromolecules 33:7481–7488

    Article  CAS  Google Scholar 

  34. Wood-Adams PM, Dealy JM, de Groot AW, Redwine OD (2000) Effect of molecular structure on the linear viscoelastic behavior of polyethylene. Macromolecules 33:7489–7499

    Article  CAS  Google Scholar 

  35. Ye X, Larson RG, Pattamaprom C, Sridhar T (2003) Extensional properties of monodisperse and bidisperse polystyrene solutions. J Rheol 47:443–468

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the National Science Foundation, DMR-0096688 and DMR-0072101 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald G. Larson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S.J., Shanbhag, S. & Larson, R.G. A hierarchical algorithm for predicting the linear viscoelastic properties of polymer melts with long-chain branching. Rheol Acta 44, 319–330 (2005). https://doi.org/10.1007/s00397-004-0415-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-004-0415-2

Keywords

Navigation