Skip to main content
Log in

Nucleating effect of boron nitride nanotubes on poly(lactic acid) crystallization

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Poly(lactic acid) (PLA) is a well-known biodegradable and biocompatible polymer. However, its poor crystallization ability restricts its broad applications. In this work, PLA/boron nitride nanotubes (BNNTs) nanocomposites were prepared by melt mixing. From either the melt or the glassy state, the effect of BNNTs on the nonisothermal and isothermal crystallization behavior of PLA was investigated by using differential scanning calorimetry (DSC) as well as polarized optical microscopy (POM). It was found that a small amount (0.25 wt%) of BNNTs could enhance both nonisothermal melt and cold crystallization of PLA remarkably. The Avrami equation was employed to analyze the calorimetric characterization of the isothermal crystallization behavior. It was found that the Avrami exponent of PLA crystallization was almost not changed in the presence of BNNTs, suggesting that both the melt and cold crystallization mechanism is unchanged with the addition of BNNTs. This investigation reveals that BNNTs are effective nucleator of PLA in substituting for carbon nanotubes (CNTs), when colorless products are demanded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ikada Y, Tsuji H (2000) Biodegradable polyesters for medical and ecological applications. Macromol Rapid Commun 21:117–132. https://doi.org/10.1002/(SICI)1521-3927(20000201)21:3%3c117::AID-MARC117%3e3.0.CO;2-X

    Article  CAS  Google Scholar 

  2. Zhao Y, Zhu B, Wang Y, Liu C, Shen C (2019) Effect of different sterilization methods on the properties of commercial biodegradable polyesters for single-use, disposable medical devices. Mater Sci Eng C 105:110041. https://doi.org/10.1016/j.msec.2019.110041

    Article  CAS  Google Scholar 

  3. Zhu B, Wang Y, Liu H, Ying J, Liu C, Shen C (2020) Effects of interface interaction and microphase dispersion on the mechanical properties of PCL/PLA/MMT nanocomposites visualized by nanomechanical mapping. Compos Sci Technol 190:108048. https://doi.org/10.1016/j.compscitech.2020.108048

    Article  CAS  Google Scholar 

  4. Sarul DS, Arslan D, Vatansever E, Kahraman Y, Durmus A, Salehiyan R, Nofar M (2021) Preparation and characterization of PLA/PBAT/CNC blend nanocomposites. Colloid Polym Sci 299(6):987–998. https://doi.org/10.1007/s00396-021-04822-9

    Article  CAS  Google Scholar 

  5. Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852. https://doi.org/10.1016/j.progpolymsci.2008.05.004

    Article  CAS  Google Scholar 

  6. Wu F, Zhang S, Zhang B, Yang W, Liu Z, Yang M (2016) The effect of the grafted chains on the crystallization of PLLA/PLLA-grafted SiO2 nanocomposites. Colloid Polym Sci 294:801–813. https://doi.org/10.1007/s00396-016-3830-x

    Article  CAS  Google Scholar 

  7. Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37:1657–1677. https://doi.org/10.1016/j.progpolymsci.2012.07.005

    Article  CAS  Google Scholar 

  8. Wang Y, Liu C, Shen C (2021) Crystallization behavior of poly(lactic acid) and its blends. Polym Cryst 4:e10171. https://doi.org/10.1002/pcr2.10171

    Article  CAS  Google Scholar 

  9. Xu Y, Wang Y, Xu T, Zhang J, Liu C, Shen C (2014) Crystallization kinetics and morphology of partially melted poly(lactic acid). Polym Test 37:179–185. https://doi.org/10.1016/j.polymertesting.2014.05.012

    Article  CAS  Google Scholar 

  10. Zhang H, Shao C, Kong W, Wang Y, Cao W, Liu C, Shen C (2017) Memory effect on the crystallization behavior of poly(lactic acid) probed by infrared spectroscopy. Eur Polym J 91:376–385. https://doi.org/10.1016/j.eurpolymj.2017.04.016

    Article  CAS  Google Scholar 

  11. Kong W, Tong B, Ye A, Ma R, Gou J, Wang Y, Liu C, Shen C (2019) Crystallization behavior and mechanical properties of poly(lactic acid)/poly(ethylene oxide) blends nucleated by a self-assembly nucleator. J Therm Anal Calorim 135:3107–3114. https://doi.org/10.1007/s10973-018-7528-9

    Article  CAS  Google Scholar 

  12. Kong W, Zhu B, Su F, Wang Z, Shao C, Wang Y, Liu C, Shen C (2019) Melting temperature, concentration and cooling rate-dependent nucleating ability of a self-assembly aryl amide nucleator on poly(lactic acid) crystallization. Polymer 168:77–85. https://doi.org/10.1016/j.polymer.2019.02.019

    Article  CAS  Google Scholar 

  13. Zhang R, Wang Y, Wang K, Zheng G, Li Q, Shen C (2013) Crystallization of poly(lactic acid) accelerated by cyclodextrin complex as nucleating agent. Polym Bull 70:195–206. https://doi.org/10.1007/s00289-012-0814-y

    Article  CAS  Google Scholar 

  14. Helanto K, Talja R, Rojas OJ (2021) Effects of talc, kaolin and calcium carbonate as fillers in biopolymer packaging materials. J Polym Eng 41:746–758. https://doi.org/10.1515/polyeng-2021-0076

    Article  CAS  Google Scholar 

  15. Han Q, Wang Y, Shao C, Zheng G, Li Q, Shen C (2014) Nonisothermal crystallization kinetics of biodegradable poly(lactic acid)/zinc phenylphosphonate composites. J Compos Mater 48:2737–2746. https://doi.org/10.1177/0021998313502064

    Article  CAS  Google Scholar 

  16. Xu T, Wang Y, Han Q, He D, Li Q, Shen C (2014) Nonisothermal crystallization kinetics of poly(lactic acid) nucleated with a multiamide nucleating agent. J Macromol Sci Part B: Phys 53:1680–1694. https://doi.org/10.1080/00222348.2014.910049

    Article  CAS  Google Scholar 

  17. Krikorian V, Pochan DJ (2005) Crystallization behavior of poly(L-lactic acid) nanocomposites: nucleation and growth probed by infrared spectroscopy. Macromolecules 38:6520–6527. https://doi.org/10.1021/ma050739z

    Article  CAS  Google Scholar 

  18. Ouchiar S, Stoclet G, Cabaret C, Gloaguen V (2016) Influence of the filler nature on the crystalline structure of polylactide-based nanocomposites: new insights into the nucleating effect. Macromolecules 49:2782–2790. https://doi.org/10.1021/acs.macromol.5b02746

    Article  CAS  Google Scholar 

  19. Papageorgiou GZ, Achilias DS, Nanaki S, Beslikas T, Bikiaris D (2010) PLA nanocomposites: effect of filler type on non-isothermal crystallization. Thermochim Acta 511:129–139. https://doi.org/10.1016/j.tca.2010.08.004

    Article  CAS  Google Scholar 

  20. Zhao Q, Wang B, Qin C, Li Q, Liu C, Shen C, Wang Y (2022) Nonisothermal melt and cold crystallization behaviors of biodegradable poly(lactic acid)/Ti3C2Tx MXene nanocomposites. J Therm Anal Calorim 147:2239–2251. https://doi.org/10.1007/s10973-020-10502-7

    Article  CAS  Google Scholar 

  21. Li Y, Wang Y, Liu L, Han L, Xiang F, Zhou Z (2009) Crystallization improvement of poly(L-lactide) induced by functionalized multiwalled carbon nanotubes. J Polym Sci Part B Polym Phys 47:326–339. https://doi.org/10.1002/polb.21645

    Article  CAS  Google Scholar 

  22. Zhao Y, Qiu Z, Yang W (2009) Effect of multi-walled carbon nanotubes on the crystallization and hydrolytic degradation of biodegradable poly(L-lactide). Compos Sci Technol 69:627–632. https://doi.org/10.1016/j.compscitech.2008.12.008

    Article  CAS  Google Scholar 

  23. Barrau S, Vanmansart C, Moreau M, Addad A, Stoclet G, Lefebvre JM, Seguela R (2011) Crystallization behavior of carbon nanotube-polylactide nanocomposites. Macromolecules 44:6496–6502. https://doi.org/10.1021/ma200842n

    Article  CAS  Google Scholar 

  24. Bai T, Zhu B, Liu H, Wang Y, Song G, Liu C, Shen C (2020) Biodegradable poly(lactic acid) nanocomposites reinforced and toughened by carbon nanotubes/clay hybrids. Int J Biol Macromol 151:628–634. https://doi.org/10.1016/j.ijbiomac.2020.02.209

    Article  CAS  PubMed  Google Scholar 

  25. Tong X, Song F, Li M, Wang X, Chin I, Wang Y (2013) Fabrication of graphene/polylactide nanocomposites with improved properties. Compos Sci Technol 88:33–38. https://doi.org/10.1016/j.compscitech.2013.08.028

    Article  CAS  Google Scholar 

  26. Xu J, Chen T, Yang C, Li Z, Mao Y, Zeng B, Hsiao B (2010) Isothermal crystallization of poly(L-lactide) induced by graphene nanosheets and carbon nanotubes: a comparative study. Macromolecules 43:5000–5008. https://doi.org/10.1021/ma100304n

    Article  CAS  Google Scholar 

  27. Wang H, Qiu Z (2012) Crystallization kinetics and morphology of biodegradable poly(L-lactic acid)/graphene oxide nanocomposites: influences of graphene oxide loading and crystallization temperature. Thermochim Acta 527:40–46. https://doi.org/10.1016/j.tca.2011.10.004

    Article  CAS  Google Scholar 

  28. Wu D, Cheng Y, Feng S, Yao Z, Zhang M (2013) Crystallization behavior of polylactide/graphene composites. Ind Eng Chem Res 52:6731–6739. https://doi.org/10.1021/ie4004199

    Article  CAS  Google Scholar 

  29. Li X, Xiao Y, Bergeret A, Longerey M, Che J (2014) Preparation of polylactide/graphene composites from liquid-phase exfoliated graphite sheets. Polym Compos 35:396–403. https://doi.org/10.1002/pc.22673

    Article  CAS  Google Scholar 

  30. Zeng Q, Wang Y, Wang Y, Cao W, Liu C, Shen C (2019) Polyethylene oxide-assisted dispersion of graphene nanoplatelets in poly(lactic acid) with enhanced mechanical properties and crystallization ability. Polym Test 78:106008. https://doi.org/10.1016/j.polymertesting.2019.106008

    Article  CAS  Google Scholar 

  31. Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C, Zhi C (2010) Boron nitride nanotubes and nanosheets. ACS Nano 4:2979–2993. https://doi.org/10.1021/nn1006495

    Article  CAS  PubMed  Google Scholar 

  32. Cohen ML, Zettl A (2010) The physics of boron nitride nanotubes. Phys Today 63:34–38. https://doi.org/10.1063/1.3518210

    Article  CAS  Google Scholar 

  33. Chen X, Wu P, Rousseas M, Okawa D, Gartner Z, Zettl A, Bertozzi CR (2009) Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. J Am Chem Soc 131:890–891. https://doi.org/10.1021/ja807334b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Joy J, George E, Haritha P, Thomas S, Anas S (2020) An overview of boron nitride based polymer nanocomposites. J Polym Sci 58:3115–3141. https://doi.org/10.1002/pol.20200507

    Article  CAS  Google Scholar 

  35. Song WL, Wang P, Cao L, Anderson A, Meziani MJ, Farr AJ, Sun YP (2012) Polymer/boron nitride nanocomposite materials for superior thermal transport performance. Angew Chem Int Ed 51:6498–6501. https://doi.org/10.1002/anie.201201689

    Article  CAS  Google Scholar 

  36. Yu J, Mo H, Jiang P (2015) Polymer/boron nitride nanosheet composite with high thermal conductivity and sufficient dielectric strength. Polym Adv Technol 26:514–520. https://doi.org/10.1002/pat.3481

    Article  CAS  Google Scholar 

  37. Bindhu B, Renisha R, Roberts L, Varghese TO (2018) Boron nitride reinforced polylactic acid composites film for packaging: preparation and properties. Polym Test 66:172–177. https://doi.org/10.1016/j.polymertesting.2018.01.018

    Article  CAS  Google Scholar 

  38. Rosely CVS, Nagendra B, Sivaprasad VP, Gowd EB (2018) Influence of boron nitride nanosheets on the crystallization and polymorphism of poly(L-lactide). J Phys Chem B 122:6442–6451. https://doi.org/10.1021/acs.jpcb.8b03211

    Article  CAS  PubMed  Google Scholar 

  39. Kong D, Zhang D, Guo H, Zhao J, Wang Z, Hu H, Xu J, Fu C (2019) Functionalized boron nitride nanosheets/poly(L-lactide) nanocomposites and their crystallization behavior. Polymers 11:440. https://doi.org/10.3390/polym11030440

    Article  CAS  PubMed Central  Google Scholar 

  40. Rosely CVS, Joseph AM, Leuteritz A, Gowd EB (2020) Phytic acid modified boron nitride nanosheets as sustainable multifunctional nanofillers for enhanced properties of poly(L-lactide). ACS Sustain Chem Eng 8:1868–1878. https://doi.org/10.1021/acssuschemeng.9b06158

    Article  CAS  Google Scholar 

  41. Chen X, Zhang L, Park C, Fay CC, Wang X, Ke C (2015) Mechanical strength of boron nitride nanotube-polymer interfaces. Appl Phys Lett 107:253105. https://doi.org/10.1063/1.4936755

    Article  CAS  Google Scholar 

  42. Wang W, Li Z, Prestat E, Hashimoto T, Guan J, Kim KS, Kingston CT, Simard B, Young RJ (2020) Reinforcement of polymer-based nanocomposites by thermally conductive and electrically insulating boron nitride nanotubes. ACS Appl Nano Mater 3:364–374. https://doi.org/10.1021/acsanm.9b02010

    Article  CAS  Google Scholar 

  43. Kim D, You M, Seol JH, Ha S, Kim YA (2017) Enhanced thermal conductivity of individual polymeric nanofiber incorporated with boron nitride nanotubes. J Phys Chem C 121:7025–7029. https://doi.org/10.1021/acs.jpcc.7b00047

    Article  CAS  Google Scholar 

  44. Lahiri D, Rouzaud F, Richard T, Keshri AK, Bakshi SR, Kos L, Agarwal A (2010) Boron nitride nanotube reinforced polylactide-polycaprolactone copolymer composite: mechanical properties and cytocompatibility with osteoblasts and macrophages in vitro. Acta Biomater 6:3524–3533. https://doi.org/10.1016/j.actbio.2010.02.044

    Article  CAS  PubMed  Google Scholar 

  45. Cavallo D, Gardella L, Alfonso GC, Mileva D, Androsch R (2012) Effect of comonomer partitioning on the kinetics of mesophase formation in random copolymers of propene and higher α-olefins. Polymer 53:4429–4437. https://doi.org/10.1016/j.polymer.2012.08.001

    Article  CAS  Google Scholar 

  46. He D, Wang Y, Shao C, Zheng G, Li Q, Shen C (2013) Effect of phthalimide as an efficient nucleating agent on the crystallization kinetics of poly(lactic acid). Polym Test 32:1088–1093. https://doi.org/10.1016/j.polymertesting.2013.06.005

    Article  CAS  Google Scholar 

  47. Wang Y, He D, Wang X, Cao W, Li Q, Shen C (2013) Crystallization of poly(lactic acid) enhanced by phthalhydrazide as nucleating agent. Polym Bull 70:2911–2922. https://doi.org/10.1007/s00289-013-0996-y

    Article  CAS  Google Scholar 

  48. Ning N, Deng H, Luo F, Wang K, Zhang Q, Chen F, Fu Q (2011) Effect of whiskers nucleation ability and shearing function on the interfacial crystal morphology of polyethylene (PE)/raw whiskers composites. Compos Part B 42:631–637. https://doi.org/10.1016/j.compositesb.2011.02.016

    Article  CAS  Google Scholar 

  49. Shen C, Wang Y, Li M, Hu D (2011) Crystal modifications and multiple melting behavior of poly(L-lactic acid-co-D-lactic acid). J Polym Sci Part B Polym Phys 49:409–413. https://doi.org/10.1002/polb.22175

    Article  CAS  Google Scholar 

  50. Wang Y, Funari SS, Mano JF (2006) Influence of semicrystalline morphology on the glass transition of poly(L-lactic acid). Macromol Chem Phys 207:1262–1271. https://doi.org/10.1002/macp.200600114

    Article  CAS  Google Scholar 

  51. Avrami M (1940) Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224. https://doi.org/10.1063/1.1750631

    Article  CAS  Google Scholar 

  52. Song P, Wei Z, Liang J, Chen G, Zhang W (2012) Crystallization behavior and nucleation analysis of poly(L-lactic acid) with a multiamide nucleating agent. Polym Eng Sci 52:1058–1068. https://doi.org/10.1002/pen.22172

    Article  CAS  Google Scholar 

  53. Zhou WY, Duan B, Wang M, Cheung WL (2009) Crystallization kinetics of poly(L-lactide)/carbonated hydroxyapatite nanocomposite microspheres. J Appl Polym Sci 113:4100–4115. https://doi.org/10.1002/app.30527

    Article  CAS  Google Scholar 

  54. Tsuji H, Takai H, Saha SK (2006) Isothermal and non-isothermal crystallization behavior of poly(L-lactic acid): Effects of stereocomplex as nucleating agent. Polymer 47:3826–3837. https://doi.org/10.1016/j.polymer.2006.03.074

    Article  CAS  Google Scholar 

  55. Deetuam C, Samthong C, Choksriwichit S, Somwangthanaroj A (2020) Isothermal cold crystallization kinetics and properties of thermoformed poly(lactic acid) composites: effects of talc, calcium carbonate, cassava starch and silane coupling agents. Iran Polym J 29:103–116. https://doi.org/10.1007/s13726-019-00778-4

    Article  CAS  Google Scholar 

  56. Quero E, Müller AJ, Signori F, Coltelli M-B, Bronco S (2012) Isothermal cold-crystallization of PLA/PBAT blends with and without the addition of acetyl tributyl citrate. Macromol Chem Phys 213:36–48. https://doi.org/10.1002/macp.201100437

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (52073261).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaming Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, C., Chen, K., Xu, R. et al. Nucleating effect of boron nitride nanotubes on poly(lactic acid) crystallization. Colloid Polym Sci 300, 775–784 (2022). https://doi.org/10.1007/s00396-022-04986-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-022-04986-y

Keywords

Navigation