Skip to main content

Advertisement

Log in

Strong conductive hybrid hydrogel electrode based on inorganic hybrid crosslinking

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Polyaniline/poly(vinyl alcohol)/TiO2 (PANI/PVA/TiO2) hybrid hydrogels with improved mechanical and electrochemical properties were fabricated via in situ oxidative polymerization of aniline (ANI) and in situ synthesized TiO2 with sol–gel method. Due to the combination of hydrogen bonds and electrostatic interactions among PANI, PVA, and TiO2, this inorganic hybrid crosslinking structures enabled the PANI/PVA/TiO2 hybrid hydrogel to possess reinforced tensile/compressive strength (26.5 kPa/8.2 MPa) and unprecedented self-healing performance. Moreover, with the optimized conductive pathways in the hybrid hydrogel, its conductivity was up to 1.38 S/m, which meets the requirement of being utilized as high-performance flexible solid-state supercapacitors. At current density of 0.5 A/g, the hydrogel-based supercapacitor provided a large capacitance of 41.0–127.5 F/g and a high energy density of 0.9–2.8 Wh/kg, which were superior to other flexible supercapacitors. The easily fabricated PANI/PVA/TiO2 conducting hydrogels provides a novel strategy to prepare hydrogel electrodes for flexible energy storage devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mawad D, Stewart E, Officer DL, Romeo T, Wagner P, Wagner K, Wallace GG (2012) A single component conducting polymer hydrogel as a scaffold for tissue engineering. Adv Funct Mater 22:2692–2699. https://doi.org/10.1002/adfm.201102373

    Article  CAS  Google Scholar 

  2. Yuk H, Lin S, Ma C, Takaffoli M, Fang NX, Zhao X (2017) Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nat Commun 8:14230. https://doi.org/10.1038/ncomms14230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yuk H, Zhang T, Lin S, Parada GA, Zhao X (2016) Tough bonding of hydrogels to diverse non-porous surfaces. Nat Mater 15:190–196. https://doi.org/10.1038/nmat4463

    Article  CAS  PubMed  Google Scholar 

  4. Wang Z, Pan Q (2017) An omni-healable supercapacitor integrated in dynamically cross-linked polymer networks. Adv Funct Mater 27:1700690. https://doi.org/10.1002/adfm.201700690

    Article  CAS  Google Scholar 

  5. Li W, Gao F, Wang X, Zhang N, Ma M (2016) Strong and robust polyaniline-based supramolecular hydrogels for flexible supercapacitors. Angew Chem Int Edit 55:9196–9201. https://doi.org/10.1002/anie.201603417

    Article  CAS  Google Scholar 

  6. Su G, Yin S, Guo Y, Zhao F, Guo Q, Zhang X, Zhou T, Yu G (2021) Balancing the mechanical, electronic, and self-healing properties in conductive self-healing hydrogel for wearable sensor applications. Mater Horiz 8:1795–1804. https://doi.org/10.1039/D1MH00085C

    Article  CAS  PubMed  Google Scholar 

  7. Wang Z, Chen J, Cong Y, Zhang H, Xu T, Nie L, Fu J (2018) Ultra stretchable strain sensors and arrays with high sensitivity and linearity based on super tough conductive hydrogels. Chem Mater 30:8062–8069. https://doi.org/10.1021/acs.chemmater.8b03999

    Article  CAS  Google Scholar 

  8. Yin J, Liu Q, Zhou J, Zhang L, Zhang Q, Rao R, Liu S, Jiao T (2020) Self-assembled functional components-doped conductive polypyrrole composite hydrogels with enhanced electrochemical performances. RSC Adv 10:10546–10551. https://doi.org/10.1039/D0RA00102C

    Article  CAS  Google Scholar 

  9. Zhou Z, Qian C, Yuan W (2021) Self-healing, anti-freezing, adhesive and remoldable hydrogel sensor with ion-liquid metal dual conductivity for biomimetic skin. Compos Sci Technol 203:108608. https://doi.org/10.1016/j.compscitech.2020.108608

    Article  CAS  Google Scholar 

  10. Wu J, Xia G, Li S, Wang L, Ma J (2020) A flexible and self-healable gelled polymer electrolyte based on a dynamically cross-linked PVA ionogel for high-performance supercapacitors. Ind Eng Chem Res 59:22509–22519. https://doi.org/10.1021/acs.iecr.0c04741

    Article  CAS  Google Scholar 

  11. Zhang G, Chen Y, Deng Y, Wang C (2017) A triblock copolymer design leads to robust hybrid hydrogels for high-performance flexible supercapacitors. ACS Appl Mater Inter 9:36301–36310. https://doi.org/10.1021/acsami.7b11572

    Article  CAS  Google Scholar 

  12. Dispenza C, Presti CL, Belfiore C, Spadaro G, Piazza S (2006) Electrically conductive hydrogel composites made of polyaniline nanoparticles and poly(N-vinyl-2-pyrrolidone). Polymer 47:961–971. https://doi.org/10.1016/j.polymer.2005.12.071

    Article  CAS  Google Scholar 

  13. Zhao Y, Liu B, Pan L, Yu G (2013) 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices. Energ Environ Sci 6:2856–2870. https://doi.org/10.1039/C3EE40997J

    Article  CAS  Google Scholar 

  14. Li L, Wang Y, Pan L, Shi Y, Cheng W, Shi Y, Yu G (2015) A nanostructured conductive hydrogels-based biosensor platform for human metabolite detection. Nano Lett 15:1146–1151. https://doi.org/10.1021/nl504217p

    Article  CAS  PubMed  Google Scholar 

  15. Tian M, Wang W, Liu Y, Jungjohann KL, Thomas Harris C, Lee YC, Yang R (2015) A three-dimensional carbon nano-network for high performance lithium ion batteries. Nano Energy 11:500–509. https://doi.org/10.1016/j.nanoen.2014.11.006

    Article  CAS  Google Scholar 

  16. Pan L, Yu G, Zhai D, Lee HR, Zhao W, Liu N, Wang H, Tee BC-K, Shi Y, Cui Y, Bao Z (2012) Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. P Natl Acad Sci USA 109:9287–9292. https://doi.org/10.1073/pnas.1202636109

    Article  Google Scholar 

  17. Dai T, Qing X, Lu Y, Xia Y (2009) Conducting hydrogels with enhanced mechanical strength. Polymer 50:5236–5241. https://doi.org/10.1016/j.polymer.2009.09.025

    Article  CAS  Google Scholar 

  18. Shi Y, Ma C, Peng L, Yu G (2015) Conductive “smart” hybrid hydrogels with PNIPAM and nanostructured conductive polymers. Adv Funct Mater 25:1219–1225. https://doi.org/10.1002/adfm.201404247

    Article  CAS  Google Scholar 

  19. Chen J, Song J, Feng X (2017) Facile synthesis of graphene/polyaniline composite hydrogel for high-performance supercapacitor. Polym Bull 74:27–37. https://doi.org/10.1007/s00289-016-1695-2

    Article  CAS  Google Scholar 

  20. Dai T, Jia Y (2011) Supramolecular hydrogels of polyaniline-poly(styrene sulfonate) prepared in concentrated solutions. Polymer 52:2550–2558. https://doi.org/10.1016/j.polymer.2011.04.006

    Article  CAS  Google Scholar 

  21. Huang H, Zeng X, Li W, Wang H, Wang Q, Yang Y (2014) Reinforced conducting hydrogels prepared from the in situ polymerization of aniline in an aqueous solution of sodium alginate. J Mater Chem A 2:16516–16522. https://doi.org/10.1039/C4TA03332A

    Article  CAS  Google Scholar 

  22. Vlasov PV, Smirnov MA, Dmitriev IY, Saprykina NN, Elyashevich GK (2014) Electrochemical activity and structure of new composite systems based on cross-linked polyacrylamide and polyaniline. Russ J Appl Chem 87:491–495. https://doi.org/10.1134/S10704272140400168

    Article  CAS  Google Scholar 

  23. Haraguchi K, Takehisa T (2002) Nanocomposite hydrogels: a unique organi/inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 14:1120–1124. https://doi.org/10.1002/1521-4095(20020816)14:16%3c1120::AID-ADMA1120%3e3.0.CO;2-9

    Article  CAS  Google Scholar 

  24. Han L, Lu X, Wang M, Gan D, Deng W, Wang K, Fang L, Liu K, Chan CW, Tang Y, Weng L, Yuan H (2017) A mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics. Small 13:1601916. https://doi.org/10.1002/smll.201601916

    Article  CAS  Google Scholar 

  25. Lee J, Kwon H, Seo J, Shin S, Koo JH, Pang C, Son S, Kim JH, Jang YH, Kim DE, Lee T (2015) Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv Mater 27:2433–2439. https://doi.org/10.1002/adma.201500009

    Article  CAS  PubMed  Google Scholar 

  26. Shin SR, Jung SM, Zalabany M, Kim K, Zorlutuna P, Kim Sb, Nikkhah M, Khabiry M, Azize M, Kong J, Wan K-t, Palacios T, Dokmeci MR, Bae H, Tang X, Khademhosseini A (2013) Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano 7:2369–2380. https://doi.org/10.1021/nn305559j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang L, Jiang J, Hua W, Darabi A, Song X, Song C, Zhong W, Xing MMQ, Qiu X (2016) Mussel-inspired conductive cryogel as cardiac tissue patch to repair myocardial infarction by migration of conductive nanoparticles. Adv Funct Mater 26:4293–4305. https://doi.org/10.1002/adfm.201505372

    Article  CAS  Google Scholar 

  28. Dvir T, Timko BP, Brigham MD, Naik SR, Karajanagi SS, Levy O, Jin H, Parker KK, Langer R, Kohane DS (2011) Nanowired three-dimensional cardiac patches. Nat Nanotechnol 6:720. https://doi.org/10.1038/nnano.2011.160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li H, Lv T, Sun H, Qian G, Li N, Yao Y, Chen T (2019) Ultrastretchable and superior healable supercapacitors based on a double cross-linked hydrogel electrolyte. Nat Commun 10:536. https://doi.org/10.1038/s41467-019-08320-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou W, Dastan D, Yin X, Nie S, Wu S, Wang Q, Li J (2020) Optimization of gas sensing properties of n-SnO2/p-xCuO sensors for homogenous gases and the sensing mechanism. J Mater Sci-Mater El 31:18412–18426. https://doi.org/10.1007/s10854-020-04387-3

    Article  CAS  Google Scholar 

  31. Yin X, Wu S, Dastan D, Nie S, Liu Y, Li Z, Zhou Y, Li J, Faik A, Shan K, Shi Z, Tarighat MA, Ma X (2021) Sensing selectivity of SnO2-Mn3O4 nanocomposite sensors for the detection of H2 and CO gases. Surf Interfaces 25:101190. https://doi.org/10.1016/j.surfin.2021.101190

    Article  CAS  Google Scholar 

  32. Du J, She X, Zhu W, Zhang H, Deng T, Li X, Liu J, Li M (2019) Tough hybrid hydrogels based on simultaneous dual in situ sol-gel technique and radical polymerization. J Appl Polym Sci 136:47742. https://doi.org/10.1002/app.47742

    Article  CAS  Google Scholar 

  33. Du J, She X, Zhu W, Yang Q, Zhang H, Tsou C (2019) Super-tough, anti-fatigue, self-healable, anti-fogging, and UV shielding hybrid hydrogel prepared via simultaneous dual in situ sol-gel technique and radical polymerization. J Mater Chem B 7:7162–7175. https://doi.org/10.1039/C9TB01625B

    Article  CAS  PubMed  Google Scholar 

  34. Tang X, Alavi S (2011) Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability. Carbohyd Polym 85:7–16. https://doi.org/10.1016/j.carbpol.2011.01.030

    Article  CAS  Google Scholar 

  35. Altaf F, Batool R, Gill R, Rehman ZU, Majeed H, Ahmad A, Shafiq M, Dastan D, Abbas G, Jacob K (2021) Synthesis and electrochemical investigations of ABPBI grafted montmorillonite based polymer electrolyte membranes for PEMFC applications. Renew Energ 164:709–728. https://doi.org/10.1016/j.renene.2020.09.104

    Article  CAS  Google Scholar 

  36. Sun L, Shi Z, He B, Wang H, Liu S, Huang M, Shi J, Dastan D, Wang H (2021) Asymmetric trilayer all-polymer dielectric composites with simultaneous high efficiency and high energy density: a novel design targeting advanced energy storage capacitors. Adv Funct Mater 31:2100280. https://doi.org/10.1002/adfm.202100280

    Article  CAS  Google Scholar 

  37. Zhang M, Shi Z, Zhang J, Zhang K, Lei L, Dastan D, Dong B (2021) Greatly enhanced dielectric charge storage capabilities of layered polymer composites incorporated with low loading fractions of ultrathin amorphous iron phosphate nanosheets. J Mater Chem C 9:10414–10424. https://doi.org/10.1039/D1TC01974K

    Article  CAS  Google Scholar 

  38. Ren J, Li Z, Liu S, Xing Y, Xie K (2008) Silica-titania mixed oxides: Si–O–Ti connectivity, coordination of titanium, and surface acidic properties. Catal Lett 124:185–194. https://doi.org/10.1007/s10562-008-9500-y

    Article  CAS  Google Scholar 

  39. Xu J, Wang K, Zu S-Z, Han B-H, Wei Z (2010) Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 4:5019–5026. https://doi.org/10.1021/nn1006539

    Article  CAS  PubMed  Google Scholar 

  40. Ricciardi R, Auriemma F, Gaillet C, De Rosa C, Lauprêtre F (2004) Investigation of the crystallinity of freeze/thaw poly(vinyl alcohol) hydrogels by different techniques. Macromolecules 37:9510–9516. https://doi.org/10.1021/ma048418v

    Article  CAS  Google Scholar 

  41. Afify TA, Ghazy OA, Saleh HH, Ali ZI (2018) Efficient in situ synthetic routes of polyaniline/poly(vinyl alcohol)/TiO2 nanocomposites using gamma irradiation. J Mol Struct 1153:128–134. https://doi.org/10.1016/j.molstruc.2017.09.094

    Article  CAS  Google Scholar 

  42. Parveen N, Ansari MO, Han TH, Cho MH (2017) Simple and rapid synthesis of ternary polyaniline/titanium oxide/graphene by simultaneous TiO2 generation and aniline oxidation as hybrid materials for supercapacitor applications. J Solid State Electr 21:57–68. https://doi.org/10.1007/s10008-016-3310-8

    Article  CAS  Google Scholar 

  43. Jiao Y, Huang Z, Hu W, Li X, Yu Q, Wang Y, Zhou Y, Dastan D (2021) In-situ hybrid Cr3C2 and γ’-Ni3(Al, Cr) strengthened Ni matrix composites: Microstructure and enhanced properties. Mater Sci Eng A Struct 820:141524. https://doi.org/10.1016/j.msea.2021.141524

    Article  CAS  Google Scholar 

  44. Yin P, Shi Z, Sun L, Xie P, Dastan D, Sun K, Fan R (2021) Improved breakdown strengths and energy storage properties of polyimide composites: the effect of internal interfaces of C/SiO2 hybrid nanoparticles. Polym Composite 42:3000–3010. https://doi.org/10.1002/pc.26034

    Article  CAS  Google Scholar 

  45. Asadzadeh M, Tajabadi F, Dastan D, Sangpour P, Shi Z, Taghavinia N (2021) Facile deposition of porous fluorine doped tin oxide by Dr. Blade method for capacitive applications. Ceram Int 47:5487–5494. https://doi.org/10.1016/j.ceramint.2020.10.131

    Article  CAS  Google Scholar 

  46. Shan K, Zhai F, Yi Z, Yin X, Dastan D, Tajabadi F, Jafari A, Abbasi S (2021) Mixed conductivity and the conduction mechanism of the orthorhombic CaZrO3 based materials. Surf Interfaces 23:100905. https://doi.org/10.1016/j.surfin.2020.100905

    Article  CAS  Google Scholar 

  47. Haghnegahdar N, Abbasi Tarighat M, Dastan D (2021) Curcumin-functionalized nanocomposite AgNPs/SDS/MWCNTs for electrocatalytic simultaneous determination of dopamine, uric acid, and guanine in co-existence of ascorbic acid by glassy carbon electrode. J Mater Sci-Mater El 32:5614–5614. https://doi.org/10.1007/s10854-021-05282-1

    Article  CAS  Google Scholar 

  48. Na R, Liu Y, Lu N, Zhang S, Liu F, Wang G (2019) Mechanically robust hydrophobic association hydrogel electrolyte with efficient ionic transport for flexible supercapacitors. Chem Eng J 374:738–747. https://doi.org/10.1016/j.cej.2019.06.004

    Article  CAS  Google Scholar 

  49. Liu Y, Lu N, Liu F, Na R, Wang G, Guan S, Liu F (2020) Highly strong and tough double-crosslinked hydrogel electrolyte for flexible supercapacitors. ChemElectroChem 7:1007–1015. https://doi.org/10.1002/celc.201902134

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Opening Project of Material Corrosion and Protection Key Laboratory of Sichuan Province, China (Nos. 2020CL21 and 2020CL22), and the Foundation of Introduced Talent of Sichuan University of Science and Engineering (No. 2017RCL28).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Du.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Zhu, W., Yang, Q. et al. Strong conductive hybrid hydrogel electrode based on inorganic hybrid crosslinking. Colloid Polym Sci 300, 111–124 (2022). https://doi.org/10.1007/s00396-021-04930-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04930-6

Keywords

Navigation