Skip to main content
Log in

Rheological and mechanical behavior of blend-based polymer nanocomposites containing Janus and non-Janus silica nanoparticles

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this study, the effects of Janus and non-Janus silica nanoparticles on the rheological and mechanical properties of blend-based polymer nanocomposites were investigated. The Janus nanoparticles were synthesized in O/W Pickering emulsion via desymmetrization process in two stages while a simple surface modification stage was used to prepare homogenously modified nanoparticles. The blend samples were prepared using polystyrene (PS) and polymethylmethacrylate (PMMA), and accordingly, (3-aminopropyl)triethoxysilane (APTES) and hexadecyltrimethoxysilane (HDTMS) were used, as surface modification agents, to enhance the compatibility of the nanoparticles with polymer phases. After molding into suitable pieces, the samples were subjected to rheology and tensile tests in order to investigate their characteristics in both melt and glassy states. The morphology and dispersion location of the nanoparticles were investigated using light microscopy, and the results were compared to some related data from the literature. Comparing the results of the samples containing Janus and non-Janus nanoparticles revealed that the Janus nanoparticles were very effective in enhancing the processibility and mechanical properties (e.g., tensile modulus and strength) of the PS/PMMA blend. Moreover, it was found that the negative effects of the aggregation/agglomeration of the nanoparticles were more significant in the case of Janus nanoparticles located at the polymer/polymer interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Hosseini M, Makhlouf ASH (2016) Industrial applications for intelligent polymers and coatings. Springer International Publishing, Switzerland

    Book  Google Scholar 

  2. Sharifzadeh E, Cheraghi K (2021) Temperature-affected mechanical properties of polymer nanocomposites from glassy-state to glass transition temperature. Mech Mater 160:103990. https://doi.org/10.1016/j.mechmat.2021.103990

    Article  Google Scholar 

  3. Zare Y, Rhee KY, Park S-J (2019) A developed equation for electrical conductivity of polymer carbon nanotubes (CNT) nanocomposites based on Halpin-Tsai model. Results in Physics 14:102406. https://doi.org/10.1016/j.rinp.2019.102406

    Article  Google Scholar 

  4. Zare Y (2014) Determination of polymer–nanoparticles interfacial adhesion and its role in shape memory behavior of shape memory polymer nanocomposites. Int J Adhes Adhes 54:67–71. https://doi.org/10.1016/j.ijadhadh.2014.05.004

    Article  CAS  Google Scholar 

  5. Zare Y, Rhee KY (2017) Development of a model for electrical conductivity of polymer/graphene nanocomposites assuming interphase and tunneling regions in conductive networks. Ind Eng Chem Res 56(32):9107–9115. https://doi.org/10.1021/acs.iecr.7b01348

    Article  CAS  Google Scholar 

  6. Thomas S, Shanks R, Chandran S (2013) Nanostructured polymer blends. Elsevier Science, London

    Google Scholar 

  7. Utracki LA (1999) Polymer blends: fundamentals. In: Karger-Kocsis J (ed) Polypropylene: An A-Z reference. Springer Netherlands, Dordrecht, pp 601–605. https://doi.org/10.1007/978-94-011-4421-6_81

  8. Maghami S, Shahrooz M, Mehrabani-Zeinabad A, Zornoza B, Sadeghi M (2020) Characterization of the polymer/particle interphase in composite materials by molecular probing. Polymer 205:122792. https://doi.org/10.1016/j.polymer.2020.122792

    Article  CAS  Google Scholar 

  9. DeArmitt C (2017) 23 - functional fillers for plastics. In: Kutz M (ed) Applied Plastics Engineering Handbook (Second Edition). William Andrew Publishing, Cambridge, pp 517–532. https://doi.org/10.1016/B978-0-323-39040-8.00023-7

  10. Sharifzadeh E (2019) Modeling of the tensile strength of immiscible binary polymer blends considering the effects of polymer/polymer interface and morphological variation. Chin J Polym Sci 37(11):1176–1182. https://doi.org/10.1007/s10118-019-2274-4

    Article  CAS  Google Scholar 

  11. Sharifzadeh E, Ghasemi I, Qarebagh AN (2015) Modeling of blend-based polymer nanocomposites using a knotted approximation of Young’s modulus. Iran Polym J 24(12):1039–1047. https://doi.org/10.1007/s13726-015-0391-7

    Article  CAS  Google Scholar 

  12. Sharifzadeh E, Ghasemi I, Karrabi M, Azizi H (2014) A new approach in modeling of mechanical properties of binary phase polymeric blends. Iran Polym J 23(7):525–530. https://doi.org/10.1007/s13726-014-0247-6

    Article  CAS  Google Scholar 

  13. Sharifzadeh E, Ghasemi I, Karrabi M, Azizi H (2014) A new approach in modeling of mechanical properties of nanocomposites: effect of interface region and random orientation. Iran Polym J 23(11):835–845. https://doi.org/10.1007/s13726-014-0276-1

    Article  CAS  Google Scholar 

  14. Willemse RC, Ramaker EJJ, van Dam J, Posthuma de Boer A (1999) Morphology development in immiscible polymer blends: initial blend morphology and phase dimensions. Polymer 40(24):6651–6659. https://doi.org/10.1016/S0032-3861(99)00038-5

    Article  CAS  Google Scholar 

  15. Sharifzadeh E, Amiri Y (2021) The effects of morphological variation and polymer/polymer interface on the tensile modulus of binary polymer blends: a modeling approach. J Polym Eng 41(2):109–118. https://doi.org/10.1515/polyeng-2020-0013

    Article  Google Scholar 

  16. Elias L, Fenouillot F, Majeste JC, Cassagnau P (2007) Morphology and rheology of immiscible polymer blends filled with silica nanoparticles. Polymer 48(20):6029–6040. https://doi.org/10.1016/j.polymer.2007.07.061

    Article  CAS  Google Scholar 

  17. Thomas S, Grohens Y, Jyotishkumar P (2015) Characterization of polymer blends: miscibility, morphology and interfaces. Wiley, Weinheim

    Google Scholar 

  18. Zare Y, Garmabi H, Rhee KY (2018) Structural and phase separation characterization of poly(lactic acid)/poly(ethylene oxide)/carbon nanotube nanocomposites by rheological examinations. Compos B Eng 144:1–10. https://doi.org/10.1016/j.compositesb.2018.02.024

    Article  CAS  Google Scholar 

  19. Sharifzadeh E (2019) Modeling of the mechanical properties of blend based polymer nanocomposites considering the effects of Janus nanoparticles on polymer/polymer interface. Chin J Polym Sci 37(2):164–177. https://doi.org/10.1007/s10118-019-2178-3

    Article  CAS  Google Scholar 

  20. Zare Y, Rhee KY (2018) Evaluation and development of expanded equations based on Takayanagi model for tensile modulus of polymer nanocomposites assuming the formation of percolating networks. Phys Mesomech 21(4):351–357. https://doi.org/10.1134/S1029959918040094

    Article  Google Scholar 

  21. Aa R, Thomas S (2019) Compatibilization of polymer blends: micro and nano scale phase morphologies, interphase characterization, and properties. Elsevier Science, New York

    Google Scholar 

  22. Sharifzadeh E, Amiri Y (2020) The effects of the arrangement of Janus nanoparticles on the tensile strength of blend-based polymer nanocomposites. Polym Compos 41(9):3585–3593. https://doi.org/10.1002/pc.25645

    Article  CAS  Google Scholar 

  23. Sharifzadeh E (2021) Evaluating the dependency of polymer/particle interphase thickness to the nanoparticles content, aggregation/agglomeration factor and type of the exerted driving force. Iran Polym J. https://doi.org/10.1007/s13726-021-00956-3

    Article  Google Scholar 

  24. Zare Y, Rhee KY (2017) Multistep modeling of Young’s modulus in polymer/clay nanocomposites assuming the intercalation/exfoliation of clay layers and the interphase between polymer matrix and nanoparticles. Compos A Appl Sci Manuf 102:137–144. https://doi.org/10.1016/j.compositesa.2017.08.004

    Article  CAS  Google Scholar 

  25. Zare Y, Rhee KY (2019) Tensile strength prediction of carbon nanotube reinforced composites by expansion of cross-orthogonal skeleton structure. Compos B Eng 161:601–607. https://doi.org/10.1016/j.compositesb.2019.01.001

    Article  CAS  Google Scholar 

  26. Sharifzadeh E, Parsnasab M (2021) Direct and reverse desymmetrization process in O/W Pickering emulsions to produce hollow graphene oxide Janus micro/nano-particles. Colloids Surf, A 619:126522. https://doi.org/10.1016/j.colsurfa.2021.126522

    Article  CAS  Google Scholar 

  27. Sharifzadeh E, Salami-Kalajahi M, Hosseini MS, Aghjeh MKR (2017) Synthesis of silica Janus nanoparticles by buoyancy effect-induced desymmetrization process and their placement at the PS/PMMA interface. Colloid Polym Sci 295(1):25–36. https://doi.org/10.1007/s00396-016-3977-5

    Article  CAS  Google Scholar 

  28. Sharifzadeh E, Salami-Kalajahi M, Hosseini MS, Aghjeh MKR (2016) A temperature-controlled method to produce Janus nanoparticles using high internal interface systems: experimental and theoretical approaches. Colloids Surf, A 506:56–62. https://doi.org/10.1016/j.colsurfa.2016.06.006

    Article  CAS  Google Scholar 

  29. Su H, Hurd Price CA, Jing L, Tian Q, Liu J, Qian K (2019) Janus particles: design, preparation, and biomedical applications. Materials Today Bio 4:100033. https://doi.org/10.1016/j.mtbio.2019.100033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zamanian-Fard A, Sharifzadeh E, Rajabi L (2020) A spontaneous interfacial process to produce silica Janus nanosheets as perfect emulsifiers in pickering emulsions. J Dispersion Sci Technol:1–10. https://doi.org/10.1080/01932691.2020.1848575

  31. Bahrami R, Löbling TI, Gröschel AH, Schmalz H, Müller AHE, Altstädt V (2014) The impact of Janus nanoparticles on the compatibilization of immiscible polymer blends under technologically relevant conditions. ACS Nano 8(10):10048–10056. https://doi.org/10.1021/nn502662p

    Article  CAS  PubMed  Google Scholar 

  32. Perro A, Meunier F, Schmitt V, Ravaine S (2009) Production of large quantities of “Janus” nanoparticles using wax-in-water emulsions. Colloids Surf, A 332(1):57–62. https://doi.org/10.1016/j.colsurfa.2008.08.027

    Article  CAS  Google Scholar 

  33. Hong L, Jiang S, Granick S (2006) Simple method to produce Janus colloidal particles in large quantity. Langmuir 22(23):9495–9499. https://doi.org/10.1021/la062716z

    Article  CAS  PubMed  Google Scholar 

  34. Sharifzadeh E, Salami-Kalajahi M, Salami Hosseini M, Razavi Aghjeh MK, Najafi S, Jannati R, Hatef Z (2017) Defining the characteristics of spherical Janus particles by investigating the behavior of their corresponding particles at the oil/water interface in a Pickering emulsion. J Dispersion Sci Technol 38(7):985–991. https://doi.org/10.1080/01932691.2016.1216861

    Article  CAS  Google Scholar 

  35. Zare Y, Garmabi H (2014) Modeling of interfacial bonding between two nanofillers (montmorillonite and CaCO3) and a polymer matrix (PP) in a ternary polymer nanocomposite. Appl Surf Sci 321:219–225. https://doi.org/10.1016/j.apsusc.2014.09.156

    Article  CAS  Google Scholar 

  36. Miller P, Sbarski I, Kosior E, Masood S, Iovenitti P (2001) Correlation of rheological and mechanical properties for blends of recycled HDPE and virgin polyolefins. J Appl Polym Sci 82(14):3505–3512. https://doi.org/10.1002/app.2212

    Article  CAS  Google Scholar 

  37. Sarkhel G, Banerjee A, Bhattacharya P (2006) Rheological and mechanical properties of LDPE/HDPE blends. Polym-Plast Technol Eng 45(6):713–718. https://doi.org/10.1080/03602550600609663

    Article  CAS  Google Scholar 

  38. Wang Y, Wu X, Yang W, Zhai Y, Xie B, Yang M (2011) Aggregate of nanoparticles: rheological and mechanical properties. Nanoscale Res Lett 6(1):114. https://doi.org/10.1186/1556-276X-6-114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zare Y, Rhee KY (2019) Evaluation of the tensile strength in carbon nanotube-reinforced nanocomposites using the expanded Takayanagi Model. JOM 71(11):3980–3988. https://doi.org/10.1007/s11837-019-03536-2

    Article  CAS  Google Scholar 

  40. Zare Y (2015) New models for yield strength of polymer/clay nanocomposites. Compos B Eng 73:111–117. https://doi.org/10.1016/j.compositesb.2014.12.026

    Article  CAS  Google Scholar 

  41. Zare Y, Rhee KY (2019) Expression of normal stress difference and relaxation modulus for ternary nanocomposites containing biodegradable polymers and carbon nanotubes by storage and loss modulus data. Compos B Eng 158:162–168. https://doi.org/10.1016/j.compositesb.2018.09.076

    Article  CAS  Google Scholar 

  42. Pourakbar E, Sharifzadeh E (2021) Synthesis of Janus/non-Janus hollow graphene oxide micro- and nanoparticles and the effects of their localization on the thermal conductivity of blend-based polymer composites. J Mater Sci. https://doi.org/10.1007/s10853-021-06402-2

    Article  Google Scholar 

  43. Sharifzadeh E, Mohammadi R Temperature-/Frequency-dependent complex viscosity and tensile modulus of polymer nanocomposites from the glassy state to the melting point. Polymer Engineering & Science n/a (n/a). https://doi.org/10.1002/pen.25786

  44. Thomas S, C S, Chandran N, (2019) Rheology of polymer blends and nanocomposites: theory, modelling and applications. Elsevier Science, Amsterdam

    Google Scholar 

  45. Sadeghipour H, Ebadi-Dehaghani H, Ashouri D, Mousavian S, Hashemi-Fesharaki M, Shahbazi Gahrouei M (2013) Effects of modified and non-modified clay on the rheological behavior of high density polyethylene. Compos B Eng 52:164–171. https://doi.org/10.1016/j.compositesb.2013.04.010

    Article  CAS  Google Scholar 

  46. Kamal MR, Utracki LA, Mirzadeh A (2014) Rheology of polymer alloys and blends. In: Utracki LA, Wilkie CA (eds) Polymer Blends Handbook. Springer Netherlands, Dordrecht, pp 725–873. https://doi.org/10.1007/978-94-007-6064-6_9

  47. Zare Y (2016) Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties. Compos A Appl Sci Manuf 84:158–164. https://doi.org/10.1016/j.compositesa.2016.01.020

    Article  CAS  Google Scholar 

  48. Mittal KL (2009) Silanes and other coupling agents, Volume 5. vol v. 5. CRC Press, Netherland

  49. Robertson CG, Lin CJ, Rackaitis M, Roland CM (2008) Influence of particle size and polymer−filler coupling on viscoelastic glass transition of particle-reinforced polymers. Macromolecules 41(7):2727–2731. https://doi.org/10.1021/ma7022364

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Fiona Ader: methodology, investigation, writing (original draft), visualization, resources, formula analysis, investigation. Esmail Sharifzadeh: supervision, project administration, writing (review & editing) – visualization, investigation, validation, conceptualization, methodology.

Corresponding author

Correspondence to Esmail Sharifzadeh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ader, F., Sharifzadeh, E. Rheological and mechanical behavior of blend-based polymer nanocomposites containing Janus and non-Janus silica nanoparticles. Colloid Polym Sci 299, 1843–1852 (2021). https://doi.org/10.1007/s00396-021-04908-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04908-4

Keywords

Navigation