Skip to main content
Log in

Casein-pectin nanocomplexes as a potential oral delivery system for improving stability and bioactivity of curcumin

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

New nanocomplexes containing curcumin-loaded casein micelles and surface-coated pectin via electrostatic interaction were fabricated. Curcumin-loaded nanocomplexes prepared at pH 4 showed the most excellent performance than that at pH 3 and pH 2, which had an average size of 266.4 nm (polydispersity index = 0.193) and loading capacity of 93%. The morphology of nanocomplexes exhibited as monodisperse spherical nanoparticles observed by SEM and TEM. The experiment of anti-oxidant activity demonstrated that nanocomplexes tremendously kept the bioactivity of curcumin. Moreover, in vitro release behaviors of curcumin from casein-pectin nanocomplexes indicated that the surface coating layer of pectin obviously delayed the release of curcumin in simulated gastric fluid, and the controlled release ability in simulated intestinal fluid was greatly enhanced. The casein-pectin nanocomplexes exhibited as a promising oral delivery vehicle of bioactive ingredients in food and pharmacy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hu K, Huang X, Gao Y, Huang X, Xiao H, McClements DJ (2015) Core–shell biopolymer nanoparticle delivery systems: synthesis and characterization of curcumin fortified zein–pectin nanoparticles. Food Chem 182:275–281. https://doi.org/10.1016/j.foodchem.2015.03.009

    Article  CAS  PubMed  Google Scholar 

  2. Bhawana BRK, Buttar HS, Jain VK, Jain N (2011) Curcumin nanoparticles: preparation, characterization, and antimicrobial study. J Agric Food Chem 59:2056–2061. https://doi.org/10.1021/jf104402t

    Article  CAS  PubMed  Google Scholar 

  3. Li J, Shin GH, Lee IW, Chen X, Park HJ (2016). Soluble starch formulated nanocomposite increases water solubility and stability of curcumin. https://doi.org/10.1016/j.foodhyd.2015.11.024

    Article  Google Scholar 

  4. Potter PE (2013) Curcumin: a natural substance with potential efficacy in Alzheimer’s disease. J Exp Pharmacol 5:23–31. https://doi.org/10.2147/JEP.S26803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shaikh J, Ankola DD, Beniwal V, Singh D, Kumar (2009) Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci 37:223–230. https://doi.org/10.1016/j.ejps.2009.02.019

    Article  CAS  PubMed  Google Scholar 

  6. Kumavat SD, Chaudhari YS, Borole P, Mishra P, Shenghani K, Duvvuri P (2013) Degradation studies of curcumin. Int J Pharm Rev Res 3:50–55

    Google Scholar 

  7. Xu G, Li L, Bao X, Yao P (2020) Curcumin, casein and soy polysaccharide ternary complex nanoparticles for enhanced dispersibility, stability and oral bioavailability of curcumin. Food Biosci 35:100569. https://doi.org/10.1016/j.fbio.2020.100569

    Article  CAS  Google Scholar 

  8. Acosta E (2009) Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr Opin Colloid Interface Sci 14:3–15. https://doi.org/10.1016/j.cocis.2008.01.002

    Article  CAS  Google Scholar 

  9. Yun Y, Cho YW, Park K (2013) Nanoparticles for oral delivery: targeted nanoparticles with peptidic ligands for oral protein delivery. Adv Drug Deliv Rev 65:822–832. https://doi.org/10.1016/j.addr.2012.10.007

    Article  CAS  PubMed  Google Scholar 

  10. Pan K, Luo Y, Gan Y, Baek SJ, Zhong Q (2014) PH-driven encapsulation of curcumin in self-assembled casein nanoparticles for enhanced dispersibility and bioactivity. Soft Matter 10:6820–6830. https://doi.org/10.1039/c4sm00239c

    Article  CAS  PubMed  Google Scholar 

  11. Jahanshahi M, Babaei Z (2008) Protein nanoparticle: a unique system as drug delivery vehicles. African J Biotechnol 7:4926–4934. https://doi.org/10.5897/AJB08.081

    Article  CAS  Google Scholar 

  12. Luo Y, Pan K, Zhong Q (2015) Casein/pectin nanocomplexes as potential oral delivery vehicles. Int J Pharm 486:59–68. https://doi.org/10.1016/j.ijpharm.2015.03.043

    Article  CAS  PubMed  Google Scholar 

  13. Chang C, Wang T, Hu Q, Luo Y (2017) Caseinate-zein-polysaccharide complex nanoparticles as potential oral delivery vehicles for curcumin: effect of polysaccharide type and chemical cross-linking. Food Hydrocoll 72:254–262. https://doi.org/10.1016/j.foodhyd.2017.05.039

    Article  CAS  Google Scholar 

  14. Chen L, Subirade M (2006) Alginate-whey protein granular microspheres as oral delivery vehicles for bioactive compounds. Biomaterials 27:4646–4654. https://doi.org/10.1016/j.biomaterials.2006.04.037

    Article  CAS  PubMed  Google Scholar 

  15. Liu Y, Guo R (2008) pH-dependent structures and properties of casein micelles. Biophys Chem 136:67–73. https://doi.org/10.1016/j.bpc.2008.03.012

    Article  CAS  PubMed  Google Scholar 

  16. Laurent MA, Boulenguer P (2003) Stabilization mechanism of acid dairy drinks (ADD) induced by pectin. Food Hydrocoll 17:445–454. https://doi.org/10.1016/S0268-005X(03)00028-6

    Article  CAS  Google Scholar 

  17. Maroziene A, De Kruif CG (2000) Interaction of pectin and casein micelles. Food Hydrocoll 14:391–394. https://doi.org/10.1016/S0268-005X(00)00019-9

    Article  CAS  Google Scholar 

  18. Ye A (2008) Complexation between milk proteins and polysaccharides via electrostatic interaction: Principles and applications—a review. Int J Food Sci Technol 43:406–415. https://doi.org/10.1111/j.1365-2621.2006.01454.x

    Article  CAS  Google Scholar 

  19. Jones OG, Lesmes U, Dubin P, McClements DJ (2010) Effect of polysaccharide charge on formation and properties of biopolymer nanoparticles created by heat treatment of β-lactoglobulin-pectin complexes. Food Hydrocoll 24:374–383. https://doi.org/10.1016/j.foodhyd.2009.11.003

    Article  CAS  Google Scholar 

  20. Chang C, Wang T, Hu Q, Zhou M, Xue J, Luo Y (2017) Pectin coating improves physicochemical properties of caseinate/zein nanoparticles as oral delivery vehicles for curcumin. Food Hydrocoll 70:143–151. https://doi.org/10.1016/j.foodhyd.2017.03.033

    Article  CAS  Google Scholar 

  21. Cheng C, Peng S, Li Z, Zou L, Liu W, Liu C (2017) Improved bioavailability of curcumin in liposomes prepared using a pH-driven, organic solvent-free, easily scalable process. RSC Adv 7:25978–25986. https://doi.org/10.1039/c7ra02861j

    Article  CAS  Google Scholar 

  22. Li C, Zhu W, Xue H, Chen Z, Chen Y, Wang X (2015) Physical and structural properties of peanut protein isolate-gum Arabic films prepared by various glycation time. Food Hydrocoll 43:322–328. https://doi.org/10.1016/j.foodhyd.2014.06.003

    Article  CAS  Google Scholar 

  23. Li KK, Yin SW, Yang XQ, Tang CH, Wei ZH (2012) Fabrication and characterization of novel antimicrobial films derived from thymol-loaded zein-sodium caseinate (SC) nanoparticles. J Agric Food Chem 60:11592–11600. https://doi.org/10.1021/jf302752v

    Article  CAS  PubMed  Google Scholar 

  24. Pereira AGB, Fajardo AR, Nocchi S, Nakamura CV, Rubira AF, Muniz EC (2013) Starch-based microspheres for sustained-release of curcumin: Preparation and cytotoxic effect on tumor cells. Carbohydr Polym 98:711–720. https://doi.org/10.1016/j.carbpol.2013.06.013

    Article  CAS  PubMed  Google Scholar 

  25. Santipanichwong R, Suphantharika M, Weiss J, McClements DJ (2008) Core-shell biopolymer nanoparticles produced by electrostatic deposition of beet pectin onto heat-denatured β-lactoglobulin aggregates. J Food Sci 73. https://doi.org/10.1111/j.1750-3841.2008.00804.x

  26. Yallapu MM, Jaggi M, Chauhan SC (2010) β-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids Surfaces B Biointerfaces 79:113–125. https://doi.org/10.1016/j.colsurfb.2010.03.039

    Article  CAS  PubMed  Google Scholar 

  27. Sun C, Xu C, Mao L, Wang D, Yang J, Gao Y (2017) Preparation, characterization and stability of curcumin-loaded zein-shellac composite colloidal particles. Food Chem 228:656–667. https://doi.org/10.1016/j.foodchem.2017.02.001

    Article  CAS  PubMed  Google Scholar 

  28. Bigucci F, Luppi B, Cerchiara T, Sorrenti M, Bettinetti G, Rodriguze L, Zecchi V (2008) Chitosan/pectin polyelectrolyte complexes: selection of suitable preparative conditions for colon-specific delivery of vancomycin. Eur J Pharm Sci 35:435–441. https://doi.org/10.1016/j.ejps.2008.09.004

    Article  CAS  PubMed  Google Scholar 

  29. Hu K, Huang X, Gao Y, Huang X, Xiao H (2015) Core-shell biopolymer nanoparticle delivery systems: synthesis and characterization of curcumin fortified zein-pectin nanoparticles. Food Chem 182:275–281. https://doi.org/10.1016/j.foodchem.2015.03.009

    Article  CAS  PubMed  Google Scholar 

  30. Mohan PRK, Sreelakshmi G, Muraleedharan CV, Joseph R (2012) Water soluble complexes of curcumin with cyclodextrins: characterization by FT-Raman spectroscopy. Vib Spectrosc 62:77–84. https://doi.org/10.1016/j.vibspec.2012.05.002

    Article  CAS  Google Scholar 

  31. Wang X, Chen Q, Lü X (2014) Pectin extracted from apple pomace and citrus peel by subcritical water. Food Hydrocoll 38:129–137. https://doi.org/10.1016/j.foodhyd.2013.12.003

    Article  CAS  Google Scholar 

  32. Gülçin I (2007) Comparison of in vitro antioxidant and antiradical activities of L-tyrosine and L-Dopa. Amino Acids 32:431–438. https://doi.org/10.1007/s00726-006-0379-x

    Article  CAS  PubMed  Google Scholar 

  33. Weber WM, Hunsaker LA, Abcouwer SF, Deck LM, Jagt DLV (2005) Anti-oxidant activities of curcumin and related enones. Bioorganic Med Chem 13:3811–3820. https://doi.org/10.1016/j.bmc.2005.03.035

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (51703174, 22073070), Startup Foundation of Chutian Scholars by Wuhan University of Science and Technology (040288, 040291), and Open Program of Hubei Province of Key Laboratory of Coal Conversion and New Carbon Materials (WKDM201901).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Na Peng or Yi Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, C., Yu, W., Yang, M. et al. Casein-pectin nanocomplexes as a potential oral delivery system for improving stability and bioactivity of curcumin. Colloid Polym Sci 299, 1557–1566 (2021). https://doi.org/10.1007/s00396-021-04858-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04858-x

Keywords

Navigation