Skip to main content
Log in

Controlled grafting modification of starch and UCST-type thermosensitive behavior in water

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A controlled grafting modification starch exhibited tunable phase transition temperature in aqueous solution was prepared via reversible addition–fragmentation chain transfer (RAFT) polymerization and esterification reaction under mild condition. P(AM/AN) copolymer was grafted onto the starch backbone and endowed the grafted copolymer thermosensitivity. The molecular structure and composition of P(AM/AN) copolymers were characterized by gel permeation chromatography (GPC), FTIR, and NMR, indicating a structurally controllable side chain of the grafted copolymer. Results of X-ray diffraction (XRD) demonstrate that the crystallinity of grafted copolymer decreases compared with starch due to side chains destruct the structural regularity of starch. Scanning electron microscopy (SEM) images show that grafted copolymer displays a rough, multilayer, and irregular morphology. Dynamic light scattering (DLS) and UV tests indicate that the grafted copolymer forms aggregates in aqueous solution and the UCST of the grafted copolymer is dependent on percent grafting (PG) and molecular interactions of side chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

RAFT:

Reversible addition–fragmentation chain transfer

AM:

Acrylamide

AN:

Acrylonitrile

TTX:

s,s′-Bis(α,α′-dimethyl-α″-acetic acid)-trithiocarbonate

UCST:

Upper critical solution temperature

LCST:

Lower critical solution temperature

DCC:

N,N-dicyclohexylcarbodiimide

DMAP:

4-Dimethylaminopyridine

DMSO-d6 :

Dimethyl sulfoxide-d6

GPC:

Gel permeation chromatography

XRD:

X-ray diffraction

DLS:

Dynamic light scattering

AIBN:

N,N′-azobisisobutyronitrile

PG:

Percent grafting

References

  1. Naohiko Shimada MN, Kano A, Maruyama A (2013) Design of UCST polymers for chilling capture of proteins. Biomacromolecules 14(5):1452–1457. https://doi.org/10.1021/bm400120y

    Article  CAS  PubMed  Google Scholar 

  2. Huang G, Li H, Feng S-T, Li X, Tong G, Liu J, Quan C, Jiang Q, Zhang C, Li Z (2015) Self-assembled UCST-type micelles as potential drug carriers for cancer therapeutics. Macromolecular Chemistry and Physics 216(9):1014–1023. https://doi.org/10.1002/macp.201400546

    Article  CAS  Google Scholar 

  3. Karjalainen E, Aseyev V, Tenhu H (2014) Counterion-induced UCST for polycations. Macromolecules 47(21):7581–7587. https://doi.org/10.1021/ma501924r

    Article  CAS  Google Scholar 

  4. Woodfield PA, Zhu Y, Pei Y, Roth PJ (2014) Hydrophobically modified sulfobetaine copolymers with tunable aqueous UCST through postpolymerization modification of poly(pentafluorophenyl acrylate). Macromolecules 47(2):750–762. https://doi.org/10.1021/ma402391a

    Article  CAS  Google Scholar 

  5. Zhang Q, Hoogenboom R (2015) Polymers with upper critical solution temperature behavior in alcohol/water solvent mixtures. Progress in Polymer Science 48:122–142. https://doi.org/10.1016/j.progpolymsci.2015.02.003

    Article  CAS  Google Scholar 

  6. Qi M, Li K, Zheng Y, Rasheed T, Zhou Y (2018) Hyperbranched multiarm copolymers with a UCST phase transition: topological effect and the mechanism. Langmuir 34(9):3058–3067. https://doi.org/10.1021/acs.langmuir.7b04255

    Article  CAS  PubMed  Google Scholar 

  7. Asadujjaman A, Espinosa de Oliveira T, Mukherji D, Bertin A (2018) Polyacrylamide “revisited”: UCST-type reversible thermoresponsive properties in aqueous alcoholic solutions. Soft Matter 14(8):1336–1343. https://doi.org/10.1039/c7sm02424j

    Article  CAS  PubMed  Google Scholar 

  8. Niskanen J, Tenhu H (2017) How to manipulate the upper critical solution temperature (UCST)? Polymer Chemistry 8(1):220–232. https://doi.org/10.1039/c6py01612j

    Article  CAS  Google Scholar 

  9. Jan Seuring SA (2012) Polymers with upper critical solution temperature in aqueous solution. Macromolecular Rapid Communications 33(22):1898–1920. https://doi.org/10.1002/marc.201200433

    Article  CAS  PubMed  Google Scholar 

  10. Zhang H, Zhang J, Dai W, Zhao Y (2017) Facile synthesis of thermo-, pH-, CO2- and oxidation-responsive poly(amido thioether)s with tunable LCST and UCST behaviors. Polymer Chemistry 8(37):5749–5760. https://doi.org/10.1039/c7py01351e

    Article  CAS  Google Scholar 

  11. Sun W, An Z, Wu P (2017) UCST or LCST? Composition-dependent thermoresponsive behavior of poly(N-acryloylglycinamide-co-diacetone acrylamide). Macromolecules 50(5):2175–2182. https://doi.org/10.1021/acs.macromol.7b00020

    Article  CAS  Google Scholar 

  12. Mäkinen L, Varadharajan D, Tenhu H, Hietala S (2016) Triple hydrophilic UCST–LCST block copolymers. Macromolecules 49(3):986–993. https://doi.org/10.1021/acs.macromol.5b02543

    Article  CAS  Google Scholar 

  13. Asadujjaman A, Kent B, Bertin A (2017) Phase transition and aggregation behaviour of an UCST-type copolymer poly(acrylamide-co-acrylonitrile) in water: effect of acrylonitrile content, concentration in solution, copolymer chain length and presence of electrolyte. Soft Matter 13(3):658–669. https://doi.org/10.1039/c6sm02262f

    Article  CAS  PubMed  Google Scholar 

  14. Zhong Y, Feng X, Chen W, Wang X, Huang KW, Gnanou Y, Lai Z (2016) Using UCST ionic liquid as a draw solute in forward osmosis to treat high-salinity water. Environ Sci Technol 50(2):1039–1045. https://doi.org/10.1021/acs.est.5b03747

    Article  CAS  PubMed  Google Scholar 

  15. Wei H, Cheng SX, Zhang XZ, Zhuo RX (2009) Thermo-sensitive polymeric micelles based on poly( N -isopropylacrylamide) as drug carriers. Progress in Polymer Science 34(9):893–910. https://doi.org/10.1016/j.progpolymsci.2009.05.002

    Article  CAS  Google Scholar 

  16. M. Amirsoleimani, M.A. Khalilzadeh, F. Sadeghifar, Sadeghifar (2018) Surface modification of nanosatrch using nano silver: a potential antibacterial for food package coating. Journal of Food Science Technology 55(3): 899.https://doi.org/10.1007/s13197-017-2996-7, 904

  17. Du Q, Wang Y, Li A, Yang H (2018) Scale-inhibition and flocculation dual-functionality of poly(acrylic acid) grafted starch. Journal of Environmental Management 210:273–279. https://doi.org/10.1016/j.jenvman.2018.01.016

    Article  CAS  PubMed  Google Scholar 

  18. Phan TD, Debeaufort F, Luu D, Voilley A (2005) Functional properties of edible agar-based and starch-based films for food quality preservation. Journal of Agricultural Food Chemistry 53(4):973–981. https://doi.org/10.1021/jf040309s

    Article  CAS  PubMed  Google Scholar 

  19. N.A.F.M. Hori, N.F.M. Nasir, N.A.M. Amin, E.M. Cheng, S.N. Sohaimi (2016) The fabrication and characterization of Hydroxyapatite-Ubi gadong starch based tissue engineering scaffolds, 2016 IEEE EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES) 220-225.

  20. Chen J, Li X, Chen L, Xie F (2018) Starch film-coated microparticles for oral colon-specific drug delivery. Carbohydrate Polymers 191(10):242–254. https://doi.org/10.1016/j.carbpol.2018.03.025

    Article  CAS  PubMed  Google Scholar 

  21. Keddie DJ (2014) A guide to the synthesis of block copolymers using reversible-addition fragmentation chain transfer (RAFT) polymerization. Chem Soc Rev 43(2):496–505. https://doi.org/10.1039/c3cs60290g

    Article  CAS  PubMed  Google Scholar 

  22. Moad G, Rizzardo E, Thang SH (2008) Radical addition–fragmentation chemistry in polymer synthesis. Polymer 49(5):1079–1131. https://doi.org/10.1016/j.polymer.2007.11.020

    Article  CAS  Google Scholar 

  23. Oh JK, Lee DI, Park JM (2009) Biopolymer-based microgels/nanogels for drug delivery applications. Progress in Polymer Science 34(12):1261–1282. https://doi.org/10.1016/j.progpolymsci.2009.08.001

    Article  CAS  Google Scholar 

  24. Thang GMERSH (2008) Toward living radical polymerization. Accounts of Chemical Research 41:1133–1142. https://doi.org/10.1021/ar800075n

    Article  CAS  PubMed  Google Scholar 

  25. Hua D, Tang J, Cheng J, Deng W, Zhu X (2008) A novel method of controlled grafting modification of chitosan via RAFT polymerization using chitosan-RAFT agent. Carbohydrate Polymers 73(1):98–104. https://doi.org/10.1016/j.carbpol.2007.11.008

    Article  CAS  Google Scholar 

  26. John DF, Lai T, Shea R (2002) Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents. Macromolecules 35:6754–6756. https://doi.org/10.1021/ma020362m

    Article  CAS  Google Scholar 

  27. Schmitz S, Dona AC, Castignolles P, Gilbert RG, Gaborieau M (2009) Assessment of the extent of starch dissolution in dimethyl sulfoxide by 1H NMR spectroscopy. Macromol Biosci 9(5):506–514. https://doi.org/10.1002/mabi.200800244

    Article  CAS  PubMed  Google Scholar 

  28. Elomaa M (2004) Determination of the degree of substitution of acetylated starch by hydrolysis, 1H NMR and TGA/IR. Carbohydrate Polymers 57(3):261–267. https://doi.org/10.1016/j.carbpol.2004.05.003

    Article  CAS  Google Scholar 

  29. Kang HM, Cai YL, Liu PS (2006) Synthesis, characterization and thermal sensitivity of chitosan-based graft copolymers. Carbohydr Res 341(17):2851–2857. https://doi.org/10.1016/j.carres.2006.08.001

    Article  CAS  PubMed  Google Scholar 

  30. Sun W, An Z, Wu P (2018) Hydrogen bonding reinforcement as a strategy to improve upper critical solution temperature of poly(N-acryloylglycinamide-co-methacrylic acid). Polymer Chemistry 9(26):3667–3673. https://doi.org/10.1039/c8py00733k

    Article  CAS  Google Scholar 

  31. Matsumura RRK (2017) Tunable dual-thermoresponsive core-shell nanogels exhibiting UCST and LCST behavior. Macromolecular Rapid Communications 38(22):1700478. https://doi.org/10.1002/marc.201700478

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianru He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 312 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, S., Gu, S., Li, X. et al. Controlled grafting modification of starch and UCST-type thermosensitive behavior in water. Colloid Polym Sci 298, 1053–1061 (2020). https://doi.org/10.1007/s00396-020-04670-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04670-z

Keywords

Navigation