Skip to main content
Log in

Bio-based castor oil organogels and investigations on their anion-tuning properties

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We report here bio-based N-(2-hydroxyethyl) ricinoleic amide (NHRA) a derivative of castor oil, as a low molecular weight gelator showing good gelation in organic solvents. NHRA gelator molecules exhibited thermoreversible gelation in specific tested organic solvents such as aniline and 1,4 dioxane. The gelator molecules are self-assembled through intermolecular hydrogen bonding and van der Waals interactions which are the determining factors for the organogel formation as confirmed by FT-IR spectroscopy. Differential scanning calorimetry (DSC) measurements show the phase transition of gels from gel to solution state and strongly depend by varying the concentration of the gelator. The supramolecular aggregation of gelators in the gel state led to viscoelastic nature of the organogels and was studied by rheology. Morphological studies reveal the presence of lamellar fibrous-like structures, which are responsible for the molecules to aggregate into 3D network. The synthesized organogel acts as a host for anions that change the physical state from gel to sol by disruption of intermolecular hydrogen-bonding interactions. The propensity of the material to exhibit anion-responsive behavior is attributed to the presence of amide linkages, under which deprotonation of N–H fragments occur upon the addition of anions, as confirmed by 19F NMR and FT-IR spectroscopy. These results indicate that NHRA gelator can be prospective candidate for sensing applications

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Abdallah DJ, Weiss RG (2000) n-Alkanes gel n-alkanes (and many other organic liquids). Langmuir 16:352–355

    CAS  Google Scholar 

  2. Sarma DS, Palanisamy A (2016) Self-assembly of aromatic biscarbamate gelators: effect of spacer length on the gelation and rheology. J Sol-Gel SciTech 79:637–649

    Google Scholar 

  3. Suzuki M, Nakajima Y, Yumoto M, Kimura M, Shirai H, Hanabusa K (2003) Effects of hydrogen bonding and van der Waals interactions on organogelation using designed low-molecular-weight gelators and gel formation at room temperature. Langmuir 19:8622–8624

    CAS  Google Scholar 

  4. Suzuki M, Nigawara T, Yumoto M, Kimura M, Shirai H, Hanabusa K (2003) New Gemini organogelators linked by oxalyl amide: organogel formation and their thermal stabilities. Tetrahedron Lett 44:6841–6843

    CAS  Google Scholar 

  5. Terech P, Weiss RG (1997) Low molecular mass gelators of organic liquids and the properties of their gels. Chem Rev 97:3133–3160

    CAS  PubMed  Google Scholar 

  6. Abdallah DJ, Lu L, Weiss RG (1999) Thermoreversible organogels from alkane gelators with one heteroatom. Chem Mater 11:2907–2911

    CAS  Google Scholar 

  7. Yang X, Zhang G, Zhang D (2012) Stimuli responsive gels based on low molecular weight gelators. J Mater Chem 22:38–50

    CAS  Google Scholar 

  8. Li S, John VT, Irvin GC, Rachakonda SH, McPherson GL, O’Connor CJ (1999) Synthesis and magnetic properties of a novel ferrite organogel. J Appl Phys 85:5965–5967

    CAS  Google Scholar 

  9. Ikeda M, Takeuchi M, Shinkai S (2003) Unusual emission properties of a triphenylene-based organogel system. Chem Commun 12:1354–1355

    Google Scholar 

  10. Hughes NE, Marangoni AG, Wright AJ, Rogers MA, Rush JW (2009) Potential food applications of edible oil organogels. Trends Food Sci Technol 20:470–480

    CAS  Google Scholar 

  11. Abdallah DJ, Weiss RG (2000) Organogels and low molecular mass organic gelators. Adv Mater 12:1237–1247

    CAS  Google Scholar 

  12. Iwanaga K, Kawai M, Miyazaki M, Kakemi M (2012) Application of organogels as oral controlled release formulations of hydrophilic drugs. Int J Pharm 436:869–872

    CAS  PubMed  Google Scholar 

  13. Gandolfo FG, Bot A, Floter E (2004) Structuring of edible oils by long-chain FA, fatty alcohols, and their mixtures. J Am Oil Chem Soc 81:1–6

    CAS  Google Scholar 

  14. Luo X, Xiao W, Li Z, Wang Q, Zhong J (2009) Supramolecular organogels formed by mono chain derivatives of succinic acid. J Colloid Interface Sci 329:372–375

    CAS  PubMed  Google Scholar 

  15. Rogers MA, Smith AK, Wright AJ, Marangoni AG (2007) A novel cryo-SEM technique for imaging vegetable oil based organogels. J Am Oil Chem Soc 84:899–906

    CAS  Google Scholar 

  16. Wright AJ, Marangoni AG (2006) Formation, structure, and rheological properties of ricinelaidic acid-vegetable oil organogels. J Am Oil Chem Soc 83:497–503

    CAS  Google Scholar 

  17. Ogunniyi DS (2006) Castor oil: a vital industrial raw material. Bioresour Technol 97:1086–1091

    CAS  PubMed  Google Scholar 

  18. Rogers MA, Wright AJ, Marangoni AG (2008) Engineering the oil binding capacity and crystallinity of self-assembled fibrillar networks of 12-hydroxystearic acid in edible oils. Soft Matter 4:1483–1490

    CAS  Google Scholar 

  19. Lukyanova L, Franceschi-Messant S, Vicendo P, Perez E, Rico-Lattes I, Weinkamer R (2010) Preparation and evaluation of microporous organogel scaffolds for cell viability and proliferation. Colloids Surfaces B 79:105–112

    CAS  Google Scholar 

  20. Terech P (1991) Small-angle-scattering study of 12-hydroxystearic physical organogels and lubricating greases. Colloid Polym Sci 269:490–500

    CAS  Google Scholar 

  21. El-Ghazawy RA, Farag RK, Elsaeed SM, Abde-Halim EDA, Yossef MA, Toyor WE (2014) Castor oil based organogels: I. Synthesis, swelling, and network parameters. J Dispers Sci Technol 35:350–357

    CAS  Google Scholar 

  22. Kumar P, Kadam MM, Gaikar VG (2012) Low molecular weight organogels and their application in the synthesis of CdS nanoparticles. Ind Eng Chem Res 51:5374–15385

    Google Scholar 

  23. Sagiri SS, Singh VK, Pal K, Banerjee I, Basak P (2015) Stearic acid based oleogels: a study on the molecular, thermal and mechanical properties. Mater Sci Eng C 48:688–699

    CAS  Google Scholar 

  24. Murdan S, Gregoriadis G, Florence AT (1999) Novel sorbitan monostearate organogels. J Pharm Sci 88:608–614

    CAS  PubMed  Google Scholar 

  25. Terech P, Pasquier D, Bordas V, Rossat C (2000) Rheological properties and structural correlations in molecular organogels. Langmuir 16:4485–4494

    CAS  Google Scholar 

  26. Khuphe M, Mukonoweshuro B, Kazlauciunas A, Thornton PD (2015) A vegetable oil-based organogel for use in pH-mediated drug delivery. Soft Matter 11:9160–9167

    CAS  PubMed  Google Scholar 

  27. Bai B, Ma J, Wei J, Song J, Wang H, Li MA (2014) A simple structural hydrazide-based gelator as a fluoride ion colorimetric sensor. Org Biomol Chem 12:3478–3483

    CAS  PubMed  Google Scholar 

  28. Maeda H (2008) Anion-responsive supramolecular gels. Chem Eur J 14:11274–11282

    CAS  PubMed  Google Scholar 

  29. Piepenbrock MOM, Clarke N, Steed JW (2009) Metal ion and anion-based “tuning” of a supramolecular metallogel. Langmuir 25:8451–8456

    CAS  PubMed  Google Scholar 

  30. Teng M, Kuang G, Jia X, Gao M, Li Y, Wei Y (2009) Glycine-glutamic-acid-based organogelators and their fluoride anion responsive properties. J Mater Chem 19:5648–5654

    CAS  Google Scholar 

  31. Varghese R, George SJ, Ajayaghosh A (2005) Anion induced modulation of self-assembly and optical properties in urea end-capped oligo (p-phenylenevinylene) s. Chem Commun 5:593–595

    Google Scholar 

  32. Baddi S, Palanisamy A (2017) Thermal and ultrasound induced gelation of bis (acyl-semicarbazides)—investigations on the anion tuning and dye adsorbing properties of their gels. Sensors Actuators B Chem 245:711–719

    CAS  Google Scholar 

  33. Piepenbrock MOM, Lloyd GO, Clarke N, Steed JW (2008) Gelation is crucially dependent on functional group orientation and may be tuned by anion binding. Chem Commun 23:2644–2646

    Google Scholar 

  34. Lloyd GO, Piepenbrock MOM, Foster JA, Clarke N, Steed JW (2012) Anion tuning of chiral bis (urea) low molecular weight gels. Soft Matter 8:204–216

    CAS  Google Scholar 

  35. Liu JW, Yang Y, Chen CF, Ma JT (2010) Novel anion-tuning supramolecular gels with dual-channel response: reversible sol− gel transition and color changes. Langmuir 26:9040–9044

    CAS  PubMed  Google Scholar 

  36. Ghosh K, Panja S (2015) Coumarin-based supramolecular gelator: a case of selective detection of F and HP2 O7 3−. RSC Adv 5:12094–12099

    CAS  Google Scholar 

  37. Guner FS, Yagcı Y, Erciyes AT (2006) Polymers from triglyceride oils. Prog Polym Sci 31:633–670

    Google Scholar 

  38. Palanisamy A, Rao BS (2007) Photo-DSC and dynamic mechanical studies on UV curable compositions containing diacrylate of ricinoleic acid amide derived from castor oil. Prog Org Coat 60:161–169

    CAS  Google Scholar 

  39. Raghavan SR, Cipriano BH (2006) Gel formation: phase diagrams using tabletop rheology and calorimetry. Springer, Dordrecht. Molecular Gels 241-252.

  40. Johansson A, Kollman P, Rothenberg S, McKelvey J (1974) Hydrogen bonding ability of the amide group. J Am Chem Soc 96:3794–3800

    CAS  Google Scholar 

  41. Skrovanek DJ, Howe SE, Painter PC, Coleman MM (1985) Hydrogen bonding in polymers: infrared temperature studies of an amorphous polyamide. Macromolecules 18:1676–1683

    CAS  Google Scholar 

  42. Wolf angel P, Meyer HH, Müller K (1999) FTIR studies of phospholipid membranes containing mono acetylenic acyl chains. Physiol Chem Phys 1:4833–4841

    CAS  Google Scholar 

  43. Murata K, Aoki M, Suzuki T, Harada T, Kawabata H, Komori T, Shinkai S (1994) Thermal and light control of the sol-gel phase transition in cholesterol-based organic gels. Novel helical aggregation modes as detected by circular dichroism and electron microscopic observation. J Am Chem Soc 116:6664–6676

    CAS  Google Scholar 

  44. Kaszynska J, Lapinski A, Bielejewski M, Luboradzki R, Tritt-Goc J (2012) On the relation between the solvent parameters and the physical properties of methyl-4, 6-O-benzylidene-α-d-glucopyranoside organogels. Tetrahedron 68:3803–3810

    CAS  Google Scholar 

  45. Esteban-Gómez D, Fabbrizzi L, Licchelli M (2005) Why, on interaction of urea-based receptors with fluoride, beautiful colors develop. J Organomet Chem 70:5717–5720

    Google Scholar 

  46. Zhang Y, Jiang S (2012) Fluoride-responsive gelator and colorimetric sensor based on simple and easy-to-prepare cyano-substituted amide. Org Biomol Chem 10:6973–6979

    CAS  PubMed  Google Scholar 

  47. Weber CD, Bradley C, Lonergan MC (2014) Solution phase n-doping of C60 and PCBM using tetrabutyl ammonium fluoride. J Mater Chem A 2:303–307

    CAS  Google Scholar 

Download references

Funding

This work was supported by the University grant commission New Delhi, India(manuscript number : IICT/Pubs./2018/275).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aruna Palanisamy.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. Castor oil–derived synthesis of N-(2-hydroxyethyl) ricinoleic amide gelator.

2. The gelator molecules exhibit thermoreversible gelation in 1,4 dioxane solvents.

3. Gelation is favored by hydrogen bonding and Van der Waals interactions

4. The material exhibits ion-sensing behavior attributed to the presence of amide linkages

Electronic supplementary material

ESM 1

(DOCX 2540 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bindu, H., Palanisamy, A. Bio-based castor oil organogels and investigations on their anion-tuning properties. Colloid Polym Sci 297, 1411–1421 (2019). https://doi.org/10.1007/s00396-019-04575-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-019-04575-6

Keywords

Navigation