Skip to main content
Log in

Preparation and characterization of dithiocarbazate Schiff base–loaded poly(lactic acid) nanoparticles and analytical validation for drug quantification

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Dithiocarbazate Schiff bases have been reported as a class of compounds that exhibit a wide range of pharmacological activities against neglected diseases such as malaria, trypanosomiasis, and tuberculosis. This work reports the encapsulation of the 1-(S-benzyldithiocarbazate)-3-methyl-5-phenyl-pyrazole (DTC) into biodegradable polymeric nanoparticles (NPs) of poly(lactic acid) (PLA) aiming potential drug delivery application. The DTC-loaded PLA-NPs were prepared by the single-nanoemulsification method using the poly(vinyl alcohol) (PVA) as a surfactant. The nanostructured system was characterized mainly by dynamic light scattering (DLS), electrophoretic light scattering (ELS), and transmission electron microscopy (TEM). The NPs show good colloidal stability exhibiting mean hydrodynamic diameter 157 ± 5 nm and zeta potential − 36 ± 3 mV. The encapsulation efficiency and drug loading were 52 ± 14% and 4.8 ± 1.5%, respectively. The quantifications of DTC and residual PVA in the NPs were performed by UV-Vis absorption spectroscopy. The analytical methods were validated according to regulatory agencies. Both quantification analytical curves showed good precision, in repeatability (intra-day) and intermediate (inter-day), and also good accuracy with low values of detection and quantification. The new nanostructured system, DTC-loaded PLA-NPs, shows advantages to improve stability and to overcome water solubility problems of the dithiocarbazate Schiff bases aiming potential drug delivery applications.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pridgen EM, Langer R, Farokhzad OC (2007) Biodegradable, polymeric nanoparticle delivery systems for cancer therapy. Nanomedicine 2:669–680

    CAS  PubMed  Google Scholar 

  2. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20

    CAS  PubMed  Google Scholar 

  3. Stark WJ (2011) Nanoparticles in biological systems. Angew Chem Int Ed 50:1242–1258

    CAS  Google Scholar 

  4. Singh R, Lillard JW (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Letchford K, Burt H (2007) A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 65:259–269

    CAS  PubMed  Google Scholar 

  6. Mora-Huertas CE, Fessi H, Elaissari a. (2010) Polymer-based nanocapsules for drug delivery. Int J Pharm 385:113–142

    CAS  PubMed  Google Scholar 

  7. Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed Nanotechnol Biol Med 2:8–21

    Google Scholar 

  8. Martínez Rivas CJ, Tarhini M, Badri W, Miladi K, Greige-Gerges H, Nazari QA, Galindo Rodríguez SA, Román RÁ, Fessi H, Elaissari A (2017) Nanoprecipitation process: from encapsulation to drug delivery. Int J Pharm 532:66–81

    PubMed  Google Scholar 

  9. Zhang Y, Chan HF, Leong KW (2013) Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev 65:104–120

    CAS  PubMed  Google Scholar 

  10. Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36:887–913

    CAS  Google Scholar 

  11. Tyler B, Gullotti D, Mangraviti A, Utsuki T, Brem H (2016) Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv Drug Deliv Rev 107:163–175

    CAS  PubMed  Google Scholar 

  12. James R, Manoukian OS, Kumbar SG (2016) Poly(lactic acid) for delivery of bioactive macromolecules. Adv Drug Deliv Rev 107:277–288

    CAS  PubMed  Google Scholar 

  13. Muppalaneni SA, Omidian H (2013) Polyvinyl alcohol in medicine and pharmacy: a perspective. J Dev Drugs 02:1000112

    Google Scholar 

  14. Wang T, Turhan M, Gunasekaran S (2004) Selected properties of pH-sensitive, biodegradable chitosan–poly(vinyl alcohol) hydrogel. Polym Int 53:911–918

    CAS  Google Scholar 

  15. Hua S, Ma H, Li X, Yang H, Wang A (2010) pH-sensitive sodium alginate/poly(vinyl alcohol) hydrogel beads prepared by combined Ca2+ crosslinking and freeze-thawing cycles for controlled release of diclofenac sodium. Int J Biol Macromol 46:517–523

    CAS  PubMed  Google Scholar 

  16. Takasu A, Aoi K, Tsuchiya M, Okada M (1999) New chitin-based polymer hybrids, 4: soil burial degradation behavior of poly(vinyl alcohol)/chitin derivative miscible blends. J Appl Polym Sci 73:1171–1179

    CAS  Google Scholar 

  17. Akbar Ali M, Livingstone SE (1974) Metal complexes of sulphur-nitrogen chelating agents. Coord Chem Rev 13:101–132

    Google Scholar 

  18. Pavan FR, da S Maia PI, Leite SRA, Deflon VM, Batista AA, Sato DN, Franzblau SG, Leite CQF (2010) Thiosemicarbazones, semicarbazones, dithiocarbazates and hydrazide/hydrazones: anti - mycobacterium tuberculosis activity and cytotoxicity. Eur J Med Chem 45:1898–1905

    CAS  PubMed  Google Scholar 

  19. Akbar Ali M, Mirza AH, Butcher RJ, Tarafder MT, Keat TB, Ali AM (2002) Biological activity of palladium(II) and platinum(II) complexes of the acetone Schiff bases of S-methyl- and S-benzyldithiocarbazate and the X-ray crystal structure of the [Pd(asme)2] (asme=anionic form of the acetone Schiff base of S-methyldithiocarbazate) complex. J Inorg Biochem 92:141–148

    CAS  PubMed  Google Scholar 

  20. Ali MA, Mirza AH, Butcher RJ, Crouse KA (2006) The preparation, characterization and biological activity of palladium(II) and platinum(II) complexes of tridentate NNS ligands derived from S-methyl- and S-benzyldithiocarbazates and the X-ray crystal structure of the [Pd(mpasme)Cl] complex. Transit Met Chem 31:79–87

    CAS  Google Scholar 

  21. Nanjundan N, Narayanasamy R, Butcher RJ, Jasinski JP, Velmurugan K, Nandhakumar R, Balakumaran MD, Kalaichelvan PT, Gnanasoundari VG (2017) Synthesis, crystal structure, biomolecular interactions and anticancer properties of Ni(II), Cu(II) and Zn(II) complexes bearing S-allyldithiocarbazate. Inorg Chim Acta 455:283–297

    CAS  Google Scholar 

  22. Maia PIS, Fernandes AGAF, Silva JJN, Andricopulo AD, Lemos SS, Lang ES, Abram U, Deflon VM (2010) Dithiocarbazate complexes with the [M(PPh3)]2+ (M=Pd or Pt) moiety Synthesis, characterization and anti- Tripanosoma cruzi activity. J Inorg Biochem 104:1276–1282

    CAS  PubMed  Google Scholar 

  23. Abu-Dief AM, Mohamed IMA (2015) A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-Suef Univ J Basic Appl Sci 4:119–133

    Google Scholar 

  24. da Silva CM, da Silva DL, Modolo LV, Alves RB, de Resende MA, Martins CVB, de Fátima A (2011) Schiff bases: a short review of their antimicrobial activities. J Adv Res 2:1–8

  25. Ansari A, Ali A, Asif M, Shamsuzzaman S (2017) Review: biologically active pyrazole derivatives. New J Chem 41:16–41

    CAS  Google Scholar 

  26. Islan GA, Durán M, Cacicedo ML, Nakazato G, Kobayashi RKT, Martinez DST, Castro GR, Durán N (2017) Nanopharmaceuticals as a solution to neglected diseases: is it possible? Acta Trop 170:16–42

    CAS  PubMed  Google Scholar 

  27. Carneiro ZA, Pedro PI, Sesti-Costa R, Lopes CD, Pereira TA, Milanezi CM, da Silva MAP, Lopez RFV, Silva JS, Deflon VM (2014) In vitro and in vivo trypanocidal activity of H2bdtc-loaded solid lipid nanoparticles. PLoS Negl Trop Dis 8:e2847

    PubMed  PubMed Central  Google Scholar 

  28. de Sousa GF, Gatto CC, Resck IS, Deflon VM (2011) Synthesis, spectroscopic studies and X-ray crystal structures of new pyrazoline and pyrazole derivatives. J Chem Crystallogr 41:401–408

    Google Scholar 

  29. Santos RLSR, Costa AR, Menezes TI, Fernades AG (2017) Synthesis and characterization of novel potential trypanocidal metallodrug of ruthenium(II)-dithiocarbazate. J Biol Inorg Chem 22:S106. https://doi.org/10.1007/s00775-017-1475-y

  30. Costa AR, de Menezes TI, Nascimento RR, dos Anjos PNM, Viana RB, Fernandes AGA, Santos RLSR (2019) Ruthenium(II) dimethylsulfoxide complex with pyrazole/dithiocarbazate ligand. J Therm Anal Calorim 138:1683–1696. https://doi.org/10.1007/s10973-019-08185-w

    CAS  Google Scholar 

  31. Silva JTDP, Silva ACD, Geiss JMT, de Araújo PHH, Becker D, Bracht L, Leimann FV, Bona E, Guerra GP, Gonçalves OH (2017) Analytical validation of an ultraviolet–visible procedure for determining lutein concentration and application to lutein-loaded nanoparticles. Food Chem 230:336–342

    CAS  PubMed  Google Scholar 

  32. World Health Organization (1992) Validation of analytical procedures used in the examination of pharmaceutical materials (Annex 5), Geneva

  33. do Rego ECP, Sakuma A, Avila AK, Bizarri CHB, de Oliveira EC, del Castillo F, Lemos IMG, Oliveras LY, Rodrigues LCV, Aguiar PF, da Silva PALopes, Martins PR, Araujo TO, de Azevedo MWD, de Oliveira AGHR, de Oliveira EFR, Hubner MTW, Camargo PW (2016) Orientação sobre validação de métodos analíticos, INMETRO (DOQ-CGCRE-008). Rio de Janeiro

  34. Ankrum JA, Miranda OR, Ng KS, Sarkar D, Xu C, Karp JM (2014) Engineering cells with intracellular agent-loaded microparticles to control cell phenotype. Nat Protoc 9:233–245

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Finley JH (1961) Spectrophotometric determination of polyvinyl alcohol in paper coatings. Anal Chem 33:1925–1927

    CAS  Google Scholar 

  36. Joshi DP, Lan-Chun-Fung YL, Pritchard JG (1979) Determination of poly(vinyl alcohol) via its complex with boric acid and iodine. Anal Chim Acta 104:153–160

    CAS  Google Scholar 

  37. Ribani M, Botoli CBG, Collins CH, Jardim ICSF, Melo LFC (2004) Validation for chromatographic and electrophoretic methdos. Quim Nova 27:771–780

  38. Thompson M, Ellison SLR, Fajgelj A, Willetts P, Wood R (1999) Harmonized guidelines for the use of recovery information in analytical measurement. Pure Appl Chem 71:337–348

    CAS  Google Scholar 

  39. Andrade JM, Estévez-Pérez MG (2014) Statistical comparison of the slopes of two regression lines: a tutorial. Anal Chim Acta 838:1–12

    CAS  PubMed  Google Scholar 

  40. Maharana T, Mohanty B, Negi YS (2010) Preparation of poly(lactic acid) nanoparticles and optimization of the particle size. Int J Green Nanotechnol Phys Chem 2:P100–P109

    Google Scholar 

  41. Hong JS, Srivastava D, Lee I (2018) Fabrication of poly(lactic acid) nano- and microparticles using a nanomixer via nanoprecipitation or emulsion diffusion. J Appl Polym Sci 135:46199

    Google Scholar 

  42. Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33:941–951

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kumar B, Jalodia K, Kumar P, Gautam HK (2017) Recent advances in nanoparticle-mediated drug delivery. J Drug Deliv Sci Technol 41:260–268

    CAS  Google Scholar 

  44. Bhattacharjee S (2016) DLS and zeta potential – what they are and what they are not? J Control Release 235:337–351

    CAS  PubMed  Google Scholar 

  45. Zhu D, Tao W, Zhang H, Liu G, Wang T, Zhang L, Zeng X, Mei L (2016) Docetaxel (DTX)-loaded polydopamine-modified TPGS-PLA nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Acta Biomater 30:144–154

    CAS  PubMed  Google Scholar 

  46. Szwed M, Santos-Oliveira R (2016) Nanoparticles with therapeutic properties generate various response of human peripheral blood mononuclear cells. J Nanosci Nanotechnol 16:6545–6550

    CAS  PubMed  Google Scholar 

  47. Thauvin C, Schwarz B, Delie F, Allémann E (2018) Functionalized PLA polymers to control loading and/or release properties of drug-loaded nanoparticles. Int J Pharm 548:771–777

    CAS  PubMed  Google Scholar 

  48. Derjaguin B, Landau L (1993) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Prog Surf Sci 43:30–59

    Google Scholar 

  49. Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier Publishing Company, Amsterdam

    Google Scholar 

  50. Sharma S, Shukla P, Misra A, Mishra PR (2014) Interfacial and colloidal properties of emulsified systems: pharmaceutical and biological perspective. In: Colloid and Interface Science in Pharmaceutical Research and Development. Elsevier, pp 149–172

  51. Moore TL, Rodriguez-Lorenzo L, Hirsch V, Balog S, Urban D, Jud C, Rothen-Rutishauser B, Lattuada M, Petri-Fink A (2015) Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem Soc Rev 44:6287–6305

    CAS  PubMed  Google Scholar 

  52. Ge C, Tian J, Zhao Y, Chen C, Zhou R, Chai Z (2015) Towards understanding of nanoparticle–protein corona. Arch Toxicol 89:519–539

    CAS  PubMed  Google Scholar 

  53. Li F, Zhu A, Song X, Ji L (2014) Novel surfactant for preparation of poly(l-lactic acid) nanoparticles with controllable release profile and cytocompatibility for drug delivery. Colloids Surf B: Biointerfaces 115:377–383

    CAS  PubMed  Google Scholar 

  54. Musyanovych A, Dausend J, Dass M, Walther P, Mailänder V, Landfester K (2011) Criteria impacting the cellular uptake of nanoparticles: a study emphasizing polymer type and surfactant effects. Acta Biomater 7:4160–4168

    CAS  PubMed  Google Scholar 

  55. Altmeyer C, Karam TK, Khalil NM, Mainardes RM (2016) Tamoxifen-loaded poly(L-lactide) nanoparticles: development, characterization and in vitro evaluation of cytotoxicity. Mater Sci Eng C 60:135–142

    CAS  Google Scholar 

  56. Roussaki M, Gaitanarou A, Diamanti PC, Vouyiouka S, Papaspyrides C, Kefalas P, Detsi A (2014) Encapsulation of the natural antioxidant aureusidin in biodegradable PLA nanoparticles. Polym Degrad Stab 108:182–187

    CAS  Google Scholar 

  57. Chu KS, Schorzman AN, Finniss MC, Bowerman CJ, Peng L, Luft JC, Madden AJ, Wang AZ, Zamboni WC, DeSimone J (2013) Nanoparticle drug loading as a design parameter to improve docetaxel pharmacokinetics and efficacy. Biomaterials 34:8424–8429

    CAS  PubMed  Google Scholar 

  58. Essa S, Rabanel JM, Hildgen P (2010) Effect of polyethylene glycol (PEG) chain organization on the physicochemical properties of poly(d, l-lactide) (PLA) based nanoparticles. Eur J Pharm Biopharm 75:96–106

    CAS  PubMed  Google Scholar 

  59. Jyothi NVN, Prasanna PM, Sakarkar SN, Prabha KS, Ramaiah PS, Srawan GY (2010) Microencapsulation techniques, factors influencing encapsulation efficiency. J Microencapsul 27:187–197

    CAS  PubMed  Google Scholar 

  60. Sahoo SK, Panyam J, Prabha S, Labhasetwar V (2002) Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J Control Release 82:105–114

    CAS  PubMed  Google Scholar 

  61. Macias CE, Bodugoz-Senturk H, Muratoglu OK (2013) Quantification of PVA hydrogel dissolution in water and bovine serum. Polymer (Guildf) 54:724–729

    CAS  Google Scholar 

  62. Noguchi H, Jyodai H, Matsuzawa S (1997) Formation of poly (vinyl alcohol)–iodine complexes in solution. J Polym Sci B Polym Phys 35:1701–1709

    CAS  Google Scholar 

  63. Zhang Z, Feng SS (2006) The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles. Biomaterials 27:4025–4033

    CAS  PubMed  Google Scholar 

  64. Zambaux M (1998) Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method. J Control Release 50:31–40

    CAS  PubMed  Google Scholar 

  65. Da Silva-Buzanello RA, Ferro AC, Bona E, Cardozo-Filho L, de Araújo PHH, Leimann FV, Gonçalves OH (2015) Validation of an ultraviolet–visible (UV–Vis) technique for the quantitative determination of curcumin in poly(l-lactic acid) nanoparticles. Food Chem 172:99–104

    CAS  PubMed  Google Scholar 

  66. Cao Y, Liu F, Chen Y, Yu T, Lou D, Guo Y, Li P, Wang Z, Ran H (2017) Drug release from core-shell PVA/silk fibroin nanoparticles fabricated by one-step electrospraying. Sci Rep 7:11913

  67. Lee BK, Yun Y, Park K (2016) PLA micro- and nano-particles. Adv Drug Deliv Rev 107:176–191

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Araujo P (2009) Key aspects of analytical method validation and linearity evaluation. J Chromatogr B Anal Technol Biomed Life Sci 877:2224–2234

    CAS  Google Scholar 

  69. AOAC International (2012) Official methods of analysis of AOAC International. In: AOAC Official Methods of Analysis, in Guidelines for Standard Method Performance Requirements (Appendix F). Gaithersburg, pp 1–17

  70. Procházková L, Rodríguez-Muñoz Y, Procházka J, Wanner J (2014) Simple spectrophotometric method for determination of polyvinylalcohol in different types of wastewater. Int J Environ Anal Chem 94:399–410

    Google Scholar 

Download references

Acknowledgments

T. I. Menezes and R. O. Costa acknowledge the FAPESB (Fundação de Amparo à Pesquisa do Estado da Bahia) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for the Master degree scholarships. The authors are also sincerely thankful to Prof. Dr. André Gustavo A. Fernandes (UESC) for donating the DTC compound. We also thank Prof. Dr. Luiz Carlos Salay (UESC) for providing laboratory facilities to perform the experiments, and Prof. Dra. Luana Novaes (UESC) for careful reading and suggestions on the validation methods. We are also grateful to the Electron Microscopy Center (UESC) and Alfredo Duarte (IQ-USP) for the technical assistance on the MET analyses.

Funding

Author D. de Oliveira Silva received financial support from from FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) [2018/00297-4] and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) [303103/2018-3].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Luis Silva Ribeiro Santos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 233 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Menezes, T.I., de Oliveira Costa, R., Sanches, R.N.F. et al. Preparation and characterization of dithiocarbazate Schiff base–loaded poly(lactic acid) nanoparticles and analytical validation for drug quantification. Colloid Polym Sci 297, 1465–1475 (2019). https://doi.org/10.1007/s00396-019-04572-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-019-04572-9

Keywords

Navigation