Skip to main content
Log in

Molecular brushes with poly-2-ethyl-2-oxazoline side chains and aromatic polyester backbone manifesting double stimuli responsiveness

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Behavior of grafted copolymers composed of aromatic polyester (PAPE) backbone and poly-2-ethyl-2-oxazoline (PEOZ) side chains differing in grafting density in aqueous solutions was studied when heated at various concentrations and pH using static and dynamic light scattering and turbidimetry. Aggregates and individual macromolecules were registered in solutions at all times. It was shown that the aggregates of the brush with higher PEOZ side chains’ grafting density undergo compaction on heating below phase separation, whereas the size of the loose polymer brush aggregates continuously increases with the increase of temperature. Phase separation temperatures of both copolymers decreased with dilution. Strong influence of pH on the thermosensitivity of both samples was shown, the copolymer solubility being decreased with the acidity decrease. The nature of the pH effect is under discussion.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Terao K, Takeo Y, Tazaki M, Nakamura Y, Norisuye T (1999) Polymacromonomer consisting of polystyrene. Light scattering characterization in cyclohexane. Polym J 31:193–198

    CAS  Google Scholar 

  2. Zhang M, Müller AHE (2005) Cylindrical polymer brushes. J Polym Sci Part A: Polym Chem 43:3461–3481

    CAS  Google Scholar 

  3. Hsu H-P, Paul W, Binder K (2007) One- and two-component bottle-brush polymers: simulations compared to theoretical predictions. Macromol theory and simulations 16(7):660–689

    CAS  Google Scholar 

  4. Sheiko SS, Sumerlin BS, Matyjaszewski M (2008) Cylindrical molecular brushes: synthesis, characterization, and properties. Prog Polym Sci 33:759–785

    CAS  Google Scholar 

  5. Verduzco R, Li X, Pesek SL, Stein GE (2015) Structure, function, self-assembly, and applications of bottlebrush copolymers. Chem Soc Rev 44:2405–2420

    CAS  PubMed  Google Scholar 

  6. Dutta S, Wade MA, Walsh DJ, Guironnet D, Rogers SA, Sing CE (2019) Dilute solution structure of bottlebrush polymers. Soft Matter 15:2928–2941

    CAS  PubMed  Google Scholar 

  7. Filippov AP, Krasova AS, Tarabukina EB, Kashina AV, Meleshko TK, Yakimansky AV (2016) The effect of side chain length on hydrodynamic and conformational characteristics of polyimide-graft-polymethylmethacrylate copolymers in thermodynamically good solutions. J Polym Res 23:219

    Google Scholar 

  8. Krishnamoorthy M, Li D, Sharili AS, Gulin-Sarfraz T, Rosenholm JM, Gautrot JE (2017) Solution conformation of polymer brushes determines their interactions with DNA and transfection efficiency. Biomacromolecules 18(12):4121–4132

    CAS  PubMed  Google Scholar 

  9. Weber C, Rogers S, Vollrath A, Hoeppener S, Rudolph T, Fritz N, Hoogenboom R, Schubert US (2013) Aqueous solution behavior of comb-shaped poly(2-ethyl-2-oxazoline). J Polym Sci Part A: Polymer Chemistry 51:139–148

    CAS  Google Scholar 

  10. Yang YQ, Guo XD, Lin WJ, Zhang LJ, Zhang CY, Qian Y (2012) Amphiphilic copolymer brush with random pH-sensitive/hydrophobic structure: synthesis and self-assembled micelles for sustained drug delivery. Soft Matter 8(2):454–464

    CAS  Google Scholar 

  11. Borisov OV, Zhulina EB (2005) Amphiphilic graft copolymer in a selective solvent: intramolecular structures and conformational transitions. Macromolecules 38(6):2506–2514

    CAS  Google Scholar 

  12. Pautov VD, Nekrasova TN, Anan’eva TD, Meleshko TK, Ilgach DM, Yakimansky AV (2013) Intramolecular mobility of side chains of poly (methacrylic acid) in regularly grafted copolyimides in solution. Polym Sci Ser A 55:526–534

    CAS  Google Scholar 

  13. Krasova A, Belyaeva E, Tarabukina E, Filippov A, Meleshko T, Ilgach D, Bogorad N, Yakimansky A (2012) Synthesis and solution properties of loose polymer brushes having polyimide backbone and methylmethacrylate side chains. Macromol Symp 316:32–42

    CAS  Google Scholar 

  14. Espinosa-Marzal RM, Nalam PC, Bolisetty S, Spencer ND (2013) Impact of solvation on equilibrium conformation of polymer brushes in solvent mixtures. Soft Matter 9:4045–4057

    CAS  Google Scholar 

  15. Chen G, Hoffman AS (1995) Graft copolymers that exhibit temperature induced phase transitions over a wide range of pH. Nature 373:49–52

    CAS  PubMed  Google Scholar 

  16. Schlaad H, Diehl C, Gress A, Meyer M, Demirel AL, Nur Y, Bertin A (2010) Poly(2-oxazoline) s as smart bioinspired polymers. Macromol Rapid Commun 31:511–525

    CAS  PubMed  Google Scholar 

  17. Roy D, Brooks WLA, Sumerlin BS (2013) New directions in thermoresponsive polymers. Chem Soc Rev 42:7214–7243

    CAS  PubMed  Google Scholar 

  18. Hoogenboom R, Schlaad H (2017) Thermoresponsive poly(2-oxazoline)s, polypeptoids, and polypeptides. Polym Chem 8:24–40

    CAS  Google Scholar 

  19. Grube M, Leiske M, Shubert U, Nischang I (2018) POx as an alternative to PEG? A hydrodynamic and light scattering study. Macromolecules 51:1905–1916

    CAS  Google Scholar 

  20. Zheng A, Xue Y, Wei D, Guan Y, Xiao H (2013) Amphiphilic star block copolymers as gene carrier part I: synthesis via ATRP using calix[4]resorcinarene-based initiators and characterization. Materials Sci and Engineering 33:519–526

    CAS  Google Scholar 

  21. Ulrich KE, Cannizzaro CM, Langer RS, Shakesheff KM (1999) Polymeric systems for controlled drug release. Chem Rev 99:3181–3198

    Google Scholar 

  22. Fael H, Rafols C, Demirel AL (2018) Poly(2-ethyl-2-oxazoline) as an alternative to poly (vinylpyrrolidone) in solid dispersions for solubility and dissolution rate enhancement of drugs. J Pharm Sci 107(9):2428–2438

    CAS  PubMed  Google Scholar 

  23. Mees MA, Effenberg C, Appelhans D, Hoogenboom R (2016) Sweet polymers: poly(2-1 ethyl-2-oxazoline) 2 glycopolymers by reductive amination. Biomacromolecules 17(12):4027–4036

    CAS  PubMed  Google Scholar 

  24. Goddard P, Hutchinson LE, Brown J, Brookman LJ (1989) Soluble polymeric carriers for drug delivery. Part 2. Preparation and in vivo behaviour of N-acylethylenimine copolymers. J Control Release 10:5–16

    CAS  Google Scholar 

  25. Chen FP, Ames AE, Taylor LD (1990) Aqueous solutions of poly (ethyloxazoline) and its lower consolute phase transition. Macromolecules 23(21):4688–4695

    CAS  Google Scholar 

  26. Park J-S, Kataoka K (2006) Precise control of lower critical solution temperature of thermosensitive poly(2-isopropyl-2-oxazoline) via gradient copolymerization with 2-ethyl-2-oxazoline as a hydrophilic comonomer. Macromolecules 39:6622–6630

    CAS  Google Scholar 

  27. Strandman S, Zarembo A, Darinskii AA, Laurinmaki P, Bucher SJ, Vuorimaa E, Lemmetinen H, Tenhu H (2008) Effect of the number of arms on the association of amphiphilic star block copolymers. Macromolecules 41:8855–8864

    CAS  Google Scholar 

  28. Sheng Y-J, Nung CH, Tsao HK (2006) Morphologies of star-block copolymers in dilute solutions. J Phys Chem B 110:21643–21650

    CAS  PubMed  Google Scholar 

  29. Amirova AI, Dudkina MM, Tenkovtsev AV, Filippov AP (2014) Self-assembly of star-shaped poly(2-isopropyl-2-oxazoline) in aqueous solutions. Colloid Polym Sci 293:239–248

    Google Scholar 

  30. Rueda J, Zschoche S, Komber H, Schmaljohann D, Voit B (2005) Synthesis and characterization of thermoresponsive graft copolymers of NIPAAm and 2-alkyl-2-oxazolines by the “grafting from” method. Macromolecules 38:7330–7336

    CAS  Google Scholar 

  31. Weber C, Wagner M, Baykal D, Hoeppener S, Paulus RM, Festag G, Altuntas E, Schacher FH, Schubert US (2013) Easy access to amphiphilic heterografted poly(2-oxazoline) comb copolymers. Macromolecules 46:5107–5116

    CAS  Google Scholar 

  32. Zhang N, Luxenhofer R, Jordan R (2012) Thermoresponsive poly(2-oxazoline) molecular brushes by living ionic polymerization: kinetic investigations of pendant chain grafting and cloud point modulation by backbone and side chain length variation. Macromol Chem Phys 213:973–981

    CAS  Google Scholar 

  33. Buhler J, Muth S, Fischer K, Schmidt M (2013) Collapse of cylindrical brushes with 2-isopropyloxazoline side chains close to the phase boundary. Macromol Rapid Commun 34:588–594

    PubMed  Google Scholar 

  34. Alvaradejo GG, Nguyen HV-T, Harvey P, Gallagher NM, Le D, Ottaviani MF, Jasanoff A, Delaittre G, Johnson JA (2019) Polyoxazoline-based bottlebrush and brush-arm star polymers via ROMP: syntheses and applications as organic radical contrast agents. ACS Macro Lett 8(4):473–478

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bose A, Jana S, Saha A, Mandal TK (2017) Amphiphilic polypeptide-polyoxazoline graft copolymer conjugate with tunable thermoresponsiveness: synthesis and self-assembly into various micellar structures in aqueous and nonaqueous media. Polymer 110:12–24

    CAS  Google Scholar 

  36. Kudryavtseva AA, Kurlykin MP, Tarabukina EB, Tenkovtsev AV, Filippov AP (2017) Behavior of thermosensitive graft-copolymer with aromatic polyester backbone and poly-2-ethyl-2-oxazoline side chains in aqueous solutions. Int J Polym Anal Char 22:526–533

    CAS  Google Scholar 

  37. Filippov AP, Tarabukina EB, Simonova MA, Kirila TU, Fundueanu G, Harabagiu V, Constantin M, Popescu I (2015) Synthesis and investigation of double stimuli-responsive behavior of N-isopropylacrylamide and maleic acid copolymer. J Macromol Sci Part B: Phys 54:1105–1121. https://doi.org/10.1080/00222348.2015.1057444

    Article  CAS  Google Scholar 

  38. Schärtl W (2007) Light scattering from polymer solutions and nanoparticle dispersions. Springer-Verlag, Berlin

    Google Scholar 

  39. Kocak G, Tuncer C, Bűtűn V (2017) pH-responsive polymers. Polym Chem 8:144–176

    CAS  Google Scholar 

  40. Amirova A, Rodchenko S, Milenin S, Tatarinova E, Kurlykin M, Tenkovtsev A, Filippov A (2017) Influence of a hydrophobic core on thermoresponsive behavior of dendrimer-based star-shaped poly(2-isopropyl-2-oxazoline) in aqueous solutions. J Polym Res 24(8):124

    Google Scholar 

  41. Kirile TY, Tobolina AI, Elkina AA, Kurlykin MP, Ten’kovtsev AV, Filippov AP (2018) Self-assembly processes in aqueous solutions of heat-sensitive star-shaped poly-2-ethyl-2-oxazoline. Fibre Chemistry 50(3):248–251

    CAS  Google Scholar 

  42. Katsumoto Y, Tsuchiizu A, Qiu XP, Winnik FM (2012) Dissecting the mechanism of the heat-induced phase separation and crystallization of poly(2-isopropyl-2-oxazoline) in water through vibrational spectroscopy and molecular orbital calculations. Macromolecules 45:3531–3541

    CAS  Google Scholar 

  43. Lin PY, Clash C, Pearce EM, Kwei TK, Aponte MA (1988) Solubility and miscibility of poly (ethyl oxazoline). J Polym Sci Part B: Polym Physics 26:603–619

    CAS  Google Scholar 

  44. Wang CH, Hsiue GH (2002) Synthesis and characterization of temperature- and pH-sensitive hydrogels based on poly(2-ethyl-2-oxazoline) and poly(D,L-lactide). J Polym Sci Part A: Polym Chem 40:1112–1121

    CAS  Google Scholar 

  45. Li J, Zhou Y, Li C, Wang D, Gao Y, Zhang C, Zhao L, Li Y, Liu Y, Li X (2015) Poly(2-ethyl-2-oxazoline)–doxorubicin conjugate-based dual endosomal pH-sensitive micelles with enhanced antitumor efficacy. Bioconjug Chem 26:110–119

    CAS  PubMed  Google Scholar 

  46. Cagli E, Yildirim E, Yang S, Erel-Goktepe I (2019) An experimental and computational approach to pH-dependent self-aggregation of poly(2-isopropyl-2-oxazoline). J Polym Sci Part B: Polym Physics 57:210-221

    Google Scholar 

  47. Amirova A, Rodchenko S, Filippov A (2016) Time dependence of the aggregation of star-shaped poly(2-isopropyl-2-oxazolines) in aqueous solutions. J Polym Res 23:221. https://doi.org/10.1007/s10965-016-1112-4

    Article  CAS  Google Scholar 

  48. Tarabukina EB, Simonova MA, Bucatariu S, Harabagiu V, Fundueanu G, Filippov AP (2015) Behavior of thermo- and pH-responsive copolymer of N-isopropylacrylamide and maleic acid in aqueous solutions. Int J Polym Anal Char 21:11–17

    Google Scholar 

  49. Filippov AP, Belyaeva EV, Zakharova NV, Sasina AS, Ilgach DM, Meleshko TK, Yakimansky AV (2015) Double stimuli-responsive behavior of graft copolymer with polyimide backbone and poly(N,N-dimethylaminoethyl methacrylate) side chains. Colloid Polym Sci 293:555–565

    CAS  Google Scholar 

Download references

Funding

The study was carried out with the financial support of the Russian Foundation for Basic Research in the framework of Research Project No. 18-03-00356_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Tarabukina.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Fig. SI1

Dependence of Ss/Sf on pH for PAPE-g-PEOZ solutions at c = 0.0015 g/cm3. (PNG 14 kb)

High resolution image

(EPS 39 kb)

Fig. SI2

The values of RslowT/Rsmin at different c for sample 2. (PNG 12 kb)

High resolution image

(EPS 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippov, A., Tarabukina, E., Kudryavtseva, A. et al. Molecular brushes with poly-2-ethyl-2-oxazoline side chains and aromatic polyester backbone manifesting double stimuli responsiveness. Colloid Polym Sci 297, 1445–1454 (2019). https://doi.org/10.1007/s00396-019-04558-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-019-04558-7

Keywords

Navigation