Skip to main content
Log in

Adsorption of an anionic surfactant at air-liquid and different solid-liquid interfaces from solutions containing high counter-ion concentration

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The self-assembly (adsorption) of the anionic surfactant, sodium dodecylbenzenesulphonate (SDBS), at air-liquid and different (octadecanethiol, β-mercaptoethanol, α-lipoic acid) solid-liquid interfaces from aqueous solutions containing high concentrations of counter-ion has been investigated. SDBS adsorption at the solid-liquid interfaces was obtained using surface plasmon resonance (SPR) while its adsorption at the air-liquid interface was extracted from surface tension measurements. The results have demonstrated that SDBS packing at the air-liquid interface is similar to its packing at the hydrophobic octadecanethiol-liquid interface. Additionally, SDBS packing at the three solid-liquid interfaces increases with increasing surface hydrophobicity, irrespective whether the surface is neutral or negatively charged. Nonetheless, SDBS adsorption is always within monolayer coverage (no evidence of bilayer or admicelle formation). The results have also revealed that SDBS affinity for the solid-liquid interfaces increases with increasing surface hydrophobicity. Furthermore, SDBS affinity for the air-liquid interface is more than 10-fold its affinity for the solid-liquid interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cotoruelo LM et al. (2009) Lignin-based activated carbons for adsorption of sodium dodecylbenzene sulfonate: equilibrium and kinetic studies. J Colloid Interface Sci 332:39–45

    Article  CAS  Google Scholar 

  2. Phan CM, Nguyen AV, Evans GM (2005) Dynamic adsorption of sodium dodecylbenzene sulphonate and dowfroth 250 onto the air–water interface. Miner Eng 18:599–603

    Article  CAS  Google Scholar 

  3. Ozdemir U et al. (2011) Modeling adsorption of sodium dodecyl benzene sulfonate (SDBS) onto polyaniline (PANI) by using multi linear regression and artificial neural networks. Chem Eng J 178:183–190

    Article  Google Scholar 

  4. Vale HM, McKenna TF (2005) Adsorption of sodium dodecyl sulfate and sodium dodecyl benzenesulfonate on poly(vinyl chloride) latexes. Colloids Surfaces A: Physicochem Eng Asp 268(2005):68–72

    Article  CAS  Google Scholar 

  5. Onaizi SA, Nasser MS, Twaiq FA (2012) Micellization and interfacial behavior of a synthetic surfactant–biosurfactant mixture. Colloids Surfaces A: Physicochem Eng Asp 415:388–393

    Article  CAS  Google Scholar 

  6. Knoll W (1998) Interfaces and thin films as seen by bound electromagnetic waves. Annu Rev Phys Chem 49:569–638

    Article  CAS  Google Scholar 

  7. He L et al. (2009) Cooperative tuneable interactions between a designed peptide biosurfactant and positional isomers of SDOBS at the air-water interface. Langmuir 25:4021–2026

    Article  CAS  Google Scholar 

  8. He L et al. (2011) Comparison of positional surfactant isomers for displacement of rubisco protein from the air–water interface. J Colloid Interface Sci 360:617–622

    Article  CAS  Google Scholar 

  9. Ma J-G, Boyd BJ, Drummond CJ (2006) Positional isomers of linear sodium dodecyl benzene sulfonate: solubility, self-assembly, and air/water interfacial activity. Langmuir 22:8646–8654

    Article  CAS  Google Scholar 

  10. Onaizi SA, Leong SSJ (2011) Tethering antimicrobial peptides: current status and potential challenges. Biotechnol Adv 29:67–74

    Article  CAS  Google Scholar 

  11. Onaizi SA, Nasser MS, Twaiq FA (2014) Lysozyme binding to tethered bilayer lipid membranes prepared by rapid solvent exchange and vesicle fusion methods. Eur Biophys J 43:191–198

    Article  CAS  Google Scholar 

  12. Onaizi SA, He L, Middelberg APJ (2009) Proteolytic cleaning of a surface-bound rubisco protein stain. Chem Eng Sci 64:3868–3878

    Article  CAS  Google Scholar 

  13. Onaizi SA, He L, Middelberg APJ (2009) Rapid screening of surfactant and biosurfactant surface cleaning performance. Colloids Surf B 72:68–74

    Article  CAS  Google Scholar 

  14. Onaizi SA, He L, Middelberg APJ (2010) The construction, fouling and enzymatic cleaning of a textile dye surface. J Colloid Interface Sci 351:203–209

    Article  CAS  Google Scholar 

  15. Zhang XL et al. (2011) The role of electrolyte and polyelectrolyte on the adsorption of the anionic surfactant, sodium dodecylbenzenesulfonate, at the air–water interface. J Colloid Interface Sci 356:656–664

    Article  CAS  Google Scholar 

  16. Ghosh P (2009) Colloid and interface science. PHI Learning Private Pvt Ltd., New Delhi

    Google Scholar 

  17. Lin S-Y et al. (2002) Determination of adsorption of an ionic surfactant on latex from surface tension measurements. Colloids Surf A Physicochem Eng Asp 196:189–198

    Article  CAS  Google Scholar 

  18. Delgado C et al. (2006) Effect of surfactant structure on the adsorption of carboxybetaines at the air–water interface. Colloids Surfaces A: Physicochem Eng Asp 280:17–22

    Article  CAS  Google Scholar 

  19. Onaizi SA, Nasser MS, Twaiq FA (2014) Adsorption and thermodynamics of biosurfactant, surfactin, monolayers at the air-buffered liquid interface. Colloid Polym Sci 292:1649–1656

    Article  CAS  Google Scholar 

  20. Giribabu K, Ghosh P (2007) Adsorption of nonionic surfactants at fluid–fluid interfaces: importance in the coalescence of bubbles and drops. Chem Eng Sci 62:3057–3067

    Article  CAS  Google Scholar 

  21. Ertekin A et al. (2009) Adsorption properties of oligo(fluorooxetane)-b-poly(ethylene oxide)-b-oligo(fluorooxetane) triblock copolymers at the air–water interface: comparison of hydroxyl and acetate end groups. J Colloid Interface Sci 336:40–45

    Article  CAS  Google Scholar 

  22. Kumar N, Couzis A, Maldarelli C (2003) Measurement of the kinetic rate constants for the adsorption of superspreading trisiloxanes to an air/aqueous interface and the relevance of these measurements to the mechanism of superspreading. J Colloid Interface Sci 267:272–285

    Article  CAS  Google Scholar 

  23. Li J, Miller R, Mohwald H (1996) Characterisation of phospholipid layers at liquid interfaces. 1. Dynamics of adsorption of phospholipids at the chloroform/water interface. Colloids Surf A: Physicochem Eng Asp 114:113–121

    Article  CAS  Google Scholar 

  24. Mucic N et al. (2011) Dynamics of interfacial layers—experimental feasibilities of adsorption kinetics and dilational rheology. Adv Colloid Interf Sci 168:167–178

    Article  CAS  Google Scholar 

  25. Onaizi SA et al. (2007) Directed disassembly of an interfacial rubisco protein network. Langmuir 23:6336–6341

    Article  CAS  Google Scholar 

  26. Paria S, Khilar KC (2004) A review on experimental studies of surfactant adsorption at the hydrophilic solid–water interface. Adv Colloid Interf Sci 110:75–95

    Article  CAS  Google Scholar 

  27. Neto AOW et al. (2014) Recent advances on the use of surfactant systems as inhibitors of corrosion on metallic surfaces. In: Fanun M (ed) The role of colloidal systems in environmental protection. Elsevier, Amsterdam

    Google Scholar 

  28. Georgieva D, Cagna A, Langevin D (2009) Link between surface elasticity and foam stability. Soft Matter 5:2063–2071

    Article  CAS  Google Scholar 

  29. Eastoe J, Tabor RF (2014) Surfactants and Nanoscience. In: Berti D, Palazzo G (eds) Colloidal Foundations of Nanoscience. Elsevier, Amsterdam

    Google Scholar 

  30. Rangel EC et al. (2011) Treatment of PVC using an alternative low energy ion bombardment procedure. Appl Surf Sci 258:1854–1861

    Article  CAS  Google Scholar 

  31. Turner SF et al. (1999) Adsorption of sodium dodecyl sulfate to a polystyrene/water interface studied by neutron reflection and attenuated total reflection infrared spectroscopy. Langmuir 15:1017–1023

    Article  CAS  Google Scholar 

  32. Zwetsloot JPH, Leyte JC (1995) The determination of the adsorption of an ionic surfactant on latex from conductivity measurements. J Colloid Interface Sci 175:1–5

    Article  CAS  Google Scholar 

  33. Baier RE, Meyer AE (1996) Physics of solid surfaces. In: Brash JL, Wojciechowski PW (eds) Interfacial phenomena and bioproducts. Marcel Dekker, New York

    Google Scholar 

  34. Klis FM et al. (2007) Extraction of cell surface-associated proteins from living yeast cells. Yeast 24:253–258

    Article  CAS  Google Scholar 

  35. Zollars RL (1999) Ionic adsorbates on hydrophobic surfaces. In: Schwarz JA, Contescu CI (eds) Surfaces of nanoparticles and porous materials. Marcel Dekker, Inc, New York

    Google Scholar 

  36. Karakashev SI, Manev ED (2002) Effect of interactions between the adsorbed species on the properties of single and mixed-surfactant monolayers at the air/water interface. J Colloid Interface Sci 248:477–486

    Article  CAS  Google Scholar 

  37. Karakashev SI, Manev ED (2003) Correlation in the properties of aqueous single films and foam containing a nonionic surfactant and organic/inorganic electrolytes. J Colloid Interface Sci 259:171–179

    Article  CAS  Google Scholar 

  38. Fainerman VB, Lucassen-Reynders EH, Miller R (1998) Adsorption of surfactants and proteins at fluid interfaces. Colloids Surf A Physicochem Eng Asp 143:141–165

    Article  CAS  Google Scholar 

  39. Cheng Q, Brajter-Toth A (1996) Permselectivity, sensitivity, and amperometric pH sensing at thioctic acid monolayer microelectrodes. Anal Chem 68:4180–4185

    Article  CAS  Google Scholar 

  40. Ahualli S et al. (2011) Adsorption of anionic and cationic surfactants on anionic colloids: supercharging and destabilization. Langmuir 27:9182–9192

    Article  CAS  Google Scholar 

  41. Denoyel R, Rouquerol J (1991) Thermodynamic (including microcalorimetry) study of the adsorption of nonionic and anionic surfactants onto silica, kaolin, and alumina. J Colloid Interface Sci 143:555–572

    Article  CAS  Google Scholar 

  42. Dick SG, Fuerstenau DW, Healy TW (1971) Adsorption of alkylbenzene sulfonate (A.B...S.) surfactants at the alumina-water interface. J Colloid Interface Sci 37:595–602

    Article  CAS  Google Scholar 

  43. Healy TW, Somasundaran P, Fuerstenau DW (2003) The adsorption of alkyl and alkylbenzene sulfonates at mineral oxide–water interfaces. Int J Miner Process 72:3–10

    Article  CAS  Google Scholar 

  44. Hu K, Bard AJ (1997) Characterization of adsorption of sodium dodecyl sulfate on charge-regulated substrates by atomic force microscopy force measurements. Langmuir 13:5418–5425

    Article  CAS  Google Scholar 

  45. Ma K et al. (2013) Adsorption of cationic and anionic surfactants on natural and synthetic carbonate materials. J Colloid Interface Sci 408:164–172

    Article  CAS  Google Scholar 

  46. Thibaut, A., et al., Adsorption of an aqueous mixture of surfactants on silica. Langmuir, 2000. 16: p. 9192-9198.

  47. Fragneto G et al. (1996) A neutron reflectivity study of the adsorption of aerosol-OT on self-assembled monolayers on silicon. J Colloid Interface Sci 178:531–537

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagheer A. Onaizi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onaizi, S.A., Nasser, M.S. & Al-Lagtah, N.M.A. Adsorption of an anionic surfactant at air-liquid and different solid-liquid interfaces from solutions containing high counter-ion concentration. Colloid Polym Sci 293, 2891–2899 (2015). https://doi.org/10.1007/s00396-015-3694-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3694-5

Keywords

Navigation