Skip to main content

Advertisement

Log in

Evolution of nanopolar phases, interfaces, and increased dielectric energy storage capacity in photoinitiated cross-linked poly(vinylidene fluoride)-based copolymers

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Photoinitiated cross-linking of poly(vinylidene fluoride-co-chlorotrifluoroethylene) can offer a significant increase in electric energy storage capacity. This improvement is related to the structural changes in the copolymer crystals brought by cross-linking. Cross-linking favors formation of polar crystalline phase, drastic reduction of spherulite sizes, and increase in copolymer inner interface area. This copolymer case demonstrates the greatly enhanced energy storage behavior, including increased discharge energy density at reduced field strength, and improved capacitor efficiency at relatively high degree of cross-linking, which may facilitate a better design for polymer dielectric materials in their application of high energy density capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lau ST, Kwok KW, Chan HLW, Choy CL (2002) Piezoelectric composite hydrophone array. Sens Actuator A-Phys 96(1):14–20

    Article  CAS  Google Scholar 

  2. Fedosov SN, Von Seggern H (2008) Pyroelectricity in polyvinylidene fluoride: Influence of polarization and charge. J Appl Phys 103(1):014105. doi:10.1063/1.2824940

    Article  Google Scholar 

  3. Naber RCG, Tanase C, Blom PWM, Gelinck GH, Marsman AW, Touwslager FJ, Setayesh S, De Leeuw DM (2005) High-performance solution-processed polymer ferroelectric field-effect transistors. Nat Mater 4(3):243–248. doi:10.1038/nmat1329

    Article  CAS  Google Scholar 

  4. Zhang QM, Li HF, Poh M, Xia F, Cheng ZY, Xu HS, Huang C (2002) An all-organic composite actuator material with a high dielectric constant. Nature 419(6904):284–287

    Article  CAS  Google Scholar 

  5. Zhang QM, Bharti V, Zhao X (1998) Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science 280(5372):2101–2104

    Article  CAS  Google Scholar 

  6. Chu BJ, Zhou X, Ren KL, Neese B, Lin MR, Wang Q, Bauer F, Zhang QM (2006) A dielectric polymer with high electric energy density and fast discharge speed. Science 313(5785):334–336

    Article  CAS  Google Scholar 

  7. Neese B, Chu BJ, Lu SG, Wang Y, Furman E, Zhang QM (2008) Large electrocaloric effect in ferroelectric polymers near room temperature. Science 321(5890):821–823

    Article  CAS  Google Scholar 

  8. Nalwa HS (1995) Ferroelectric polymers: Chemistry, physics, and applications. Marcel Dekker, New York

    Google Scholar 

  9. Wang J, Li H, Liu J, Duan Y, Jiang S, Yan S (2003) On the α → β Transition of Carbon-Coated Highly Oriented PVDF Ultrathin Film Induced by Melt Recrystallization. J Am Chem Soc 125(6):1496–1497. doi:10.1021/ja029352r

    Article  CAS  Google Scholar 

  10. Chung TC, Petchsuk A (2002) Synthesis and properties of ferroelectric fluoroterpolymers with Curie transition at ambient temperature. Macromolecules 35(20):7678–7684

    Article  CAS  Google Scholar 

  11. Bao HM, Jia CL, Wang CC, Shen QD, Yang CZ, Zhang QM (2008) A type of poly(vinylidene fluoride-trifluoroethylene) copolymer exhibiting ferroelectric relaxor behavior at high temperature (similar to 100 degrees C). Appl Phys Lett 92(4):042903. doi:10.1063/1.2838309

    Article  Google Scholar 

  12. Chu BJ, Zhou X, Neese B, Zhang QM, Bauer F (2006) Relaxor ferroelectric poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer for high energy density storage capacitors. IEEE Trans Dielectr Electr Insul 13(5):1162–1169

    CAS  Google Scholar 

  13. Ranjan V, Yu L, Nardelli MB, Bernholc J (2007) Phase equilibria in high energy density PVDF-Based polymers. Phys Rev Lett 99(4):047801. doi:10.1103/PhysRevLett.99.047801

    Article  CAS  Google Scholar 

  14. Zhou X, Zhao XH, Suo ZG, Zou C, Runt J, Liu S, Zhang SH, Zhang QM (2009) Electrical breakdown and ultrahigh electrical energy density in poly(vinylidene fluoride-hexafluoropropylene) copolymer. Appl Phys Lett 94(16):162901. doi:10.1063/1.3123001

    Article  Google Scholar 

  15. Zhou X, Chu BJ, Neese B, Lin MR, Zhang QM (2007) Electrical energy density and discharge characteristics of a poly(vinylidene fluoride-chlorotrifluoroethylene) copolymer. IEEE Trans Dielectr Electr Insul 14(5):1133–1138

    Article  Google Scholar 

  16. Guan FX, Wang J, Pan JL, Wang Q, Zhu L (2010) Effects of polymorphism and crystallite size on dipole reorientation in poly(vinylidene fluoride) and its random copolymers. Macromolecules 43(16):6739–6748. doi:10.1021/ma101062j

    Article  CAS  Google Scholar 

  17. Ma WZ, Chen SJ, Zhang J, Wang XL (2009) Crystallization behavior and hydrophilicity of poly(vinylidene fluoride) (PVDF)/poly(methylmethacrylate) (PMMA)/poly(styrene-co-acrylonitrile) (SAN) ternary blends. Colloid Polym Sci 287(2):147–155

    Article  CAS  Google Scholar 

  18. Ma WZ, Zhang J, Chen SJ, Wang XL (2008) Crystallization behavior and hydrophilicity of poly (vinylidene fluoride) (PVDF)/poly (styrene-co-acrylonitrile) (SAN) blends. Colloid Polym Sci 286(10):1193–1202

    Article  CAS  Google Scholar 

  19. Zhang ZC, Chung TCM (2007) The structure–property relationship of poly(vinylidene difluoride)-based polymers with energy storage and loss under applied electric fields. Macromolecules 40(26):9391–9397. doi:10.1021/ma071561e

    Article  CAS  Google Scholar 

  20. Li JJ, Seok SI, Chu BJ, Dogan F, Zhang QM, Wang Q (2009) Nanocomposites of ferroelectric polymers with TiO2 nanoparticles exhibiting significantly enhanced electrical energy density. Adv Mater 21(2):217–221. doi:10.1002/adma.200801106

    Article  Google Scholar 

  21. Li JJ, Claude J, Norena-Franco LE, Il Seok S, Wang Q (2008) Electrical energy storage in ferroelectric polymer nanocomposites containing surface-functionalized BaTiO3 nanoparticles. Chem Mater 20(20):6304–6306. doi:10.1021/cm8021648

    Article  CAS  Google Scholar 

  22. Chu BJ, Lin MR, Neese B, Zhou X, Chen Q, Zhang QM (2007) Large enhancement in polarization response and energy density of poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) by interface effect in nanocomposites. Appl Phys Lett 91(12):122909

    Article  Google Scholar 

  23. Kim P, Doss NM, Tillotson JP, Hotchkiss PJ, Pan MJ, Marder SR, Li JY, Calame JP, Perry JW (2009) High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer. ACS Nano 3(9):2581–2592. doi:10.1021/nn9006412

    Article  CAS  Google Scholar 

  24. Chen XZ, Li ZW, Cheng ZX, Zhang JZ, Shen QD, Ge HX, Li HT (2011) Greatly enhanced energy density and patterned films induced by photo cross-linking of poly(vinylidene fluoride-chlorotrifluoroethylene). Macromol Rapid Commun 32(1):94–99. doi:10.1002/marc.201000478

    Article  CAS  Google Scholar 

  25. Niwa T, Hatada M, Miyata H, Takahashi T (1993) Studies on the improvement of breakdown strength of polyolefins. IEEE Trans Electr Insul 28(1):30–34

    Article  CAS  Google Scholar 

  26. Yasuda N, Yamamoto S, Wada Y, Yanagida S (2001) Photocrosslinking reaction of vinyl-functional polyphenylsilsesquioxane sensitized with aromatic bisazide compounds. J Polym Sci Pol Chem 39(24):4196–4205

    Article  CAS  Google Scholar 

  27. Low BT, Chung TS, Chen H, Jean Y-C, Pramoda KP (2009) Tuning the free volume cavities of polyimide membranes via the construction of pseudo-interpenetrating neteworks for enhanced gas separation performance. Macromolecules 42(18):7042–7054. doi:10.1021/ma901251y

    Article  CAS  Google Scholar 

  28. Tashiro K, Kobayashi M, Tadokoro H (1981) Vibrational spectra and disorder–order transition of poly(vinylidene fluoride) form III. Macromolecules 14(6):1757–1764

    Article  CAS  Google Scholar 

  29. Wang CC, Song JF, Bao HM, Shen QD, Yang CZ (2008) Enhancement of electrical properties of ferroelectric polymers by polyaniline nanofibers with controllable conductivities. Adv Funct Mater 18(8):1299–1306. doi:10.1002/adfm.200701100

    Article  CAS  Google Scholar 

  30. Bharti V, Zhao XZ, Zhang QM, Romotowski T, Tito F, Ting R (1998) Ultrahigh field induced strain and polarization response in electron irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Mater Res Innov 2(2):57–63

    Article  CAS  Google Scholar 

  31. Chu BJ, Neese B, Lin MR, Lu SG, Zhang QM (2008) Enhancement of dielectric energy density in the poly(vinylidene fluoride)-based terpolymer/copolymer blends. Appl Phys Lett 93(15):152903. doi:10.1063/1.3002277

    Article  Google Scholar 

  32. Misra T, Bisoyi DK, Patel T, Patra KC, Patel A (1988) Small-angle X-ray study of cellulose in cotton using correlation-functions. Polym J 20(9):739–749

    Article  CAS  Google Scholar 

  33. Gemeinhardt GC, Moore RB (2005) Characterization of ionomer-compatibilized blend morphology using synchrotron small-angle X-ray scattering. Macromolecules 38(7):2813–2819

    Article  CAS  Google Scholar 

  34. Mueller V, Zhang QM (1998) Nonlinearity and scaling behavior in donor-doped lead zirconate titanate piezoceramic. Appl Phys Lett 72(21):2692–2694

    Article  CAS  Google Scholar 

  35. Sidorkin AS (2006) Domain Structure in Ferroelectrics and Related Materials. Cambridge International Science Publishing, Cambridge

    Google Scholar 

  36. Su HB, Strachan A, Goddard WA (2004) Density functional theory and molecular dynamics studies of the energetics and kinetics of electroactive polymers: PVDF and P(VDF-TrFE). Phys Rev B 70(6):064101. doi:10.1103/PhysRevB.70.064101

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (nos. 21274057 and 20825415), Fundamental Research Funds for the Central Universities (no. 1103020504), and Scientific Research Foundation of Graduate School of Nanjing University (no. 2010CL06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qun-Dong Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, XZ., Cheng, ZX., Liu, L. et al. Evolution of nanopolar phases, interfaces, and increased dielectric energy storage capacity in photoinitiated cross-linked poly(vinylidene fluoride)-based copolymers. Colloid Polym Sci 291, 1989–1997 (2013). https://doi.org/10.1007/s00396-013-2939-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-2939-4

Keywords

Navigation