Skip to main content
Log in

Remote ischemic preconditioning reduces myocardial ischemia–reperfusion injury through unacylated ghrelin-induced activation of the JAK/STAT pathway

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Remote ischemic preconditioning (RIPC) offers cardioprotection against myocardial ischemia–reperfusion injury. The humoral factors involved in RIPC that are released from parasympathetically innervated organs have not been identified. Previous studies showed that ghrelin, a hormone released from the stomach, is associated with cardioprotection. However, it is unknown whether or not ghrelin is involved in the mechanism of RIPC. This study aimed to determine whether ghrelin serves as one of the humoral factors in RIPC. RIPC group rats were subjected to three cycles of ischemia and reperfusion for 5 min in two limbs before left anterior descending (LAD) coronary artery ligation. Unacylated ghrelin (UAG) group rats were given 0.5 mcg/kg UAG intravenously 30 min before LAD ligation. Plasma levels of UAG in all groups were measured before and after RIPC procedures and UAG administration. Additionally, JAK2/STAT3 pathway inhibitor (AG490) was injected in RIPC and UAG groups to investigate abolishment of the cardioprotection of RIPC and UAG. Plasma levels of UAG, infarct size and phosphorylation of STAT3 were compared in all groups. Infarct size was significantly reduced in RIPC and UAG groups, compared to the other groups. Plasma levels of UAG in RIPC and UAG groups were significantly increased after RIPC and UAG administration, respectively. The cardioprotective effects of RIPC and UAG were accompanied by an increase in phosphorylation of STAT3 and abolished by AG490. This study indicated that RIPC reduces myocardial ischemia and reperfusion injury through UAG-induced activation of JAK/STAT pathway. UAG may be one of the humoral factors involved in the cardioprotective effects of RIPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

The data are available from the corresponding author on reasonable request.

References

  1. Arroyo-Martinez EA, Meaney A, Gutierrez-Salmean G, Rivera-Capello JM, Gonzalez-Coronado V, Alcocer-Chauvet A, Castillo G, Najera N, Ceballos G, Meaney E (2016) Is local nitric oxide availability responsible for myocardial salvage after remote preconditioning? Arq Bras Cardiol 107:154–162. https://doi.org/10.5935/abc.20160100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Baldanzi G, Filigheddu N, Cutrupi S, Catapano F, Bonissoni S, Fubini A, Malan D, Baj G, Granata R, Broglio F, Papotti M, Surico N, Bussolino F, Isgaard J, Deghenghi R, Sinigaglia F, Prat M, Muccioli G, Ghigo E, Graziani A (2002) Ghrelin and des-acyl ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERK1/2 and PI 3-kinase/AKT. J Cell Biol 159:1029–1037. https://doi.org/10.1083/jcb.200207165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Basalay MV, Davidson SM, Gourine AV, Yellon DM (2018) Neural mechanisms in remote ischaemic conditioning in the heart and brain: mechanistic and translational aspects. Basic Res Cardiol 113:25. https://doi.org/10.1007/s00395-018-0684-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Basalay MV, Mastitskaya S, Mrochek A, Ackland GL, Del Arroyo AG, Sanchez J, Sjoquist PO, Pernow J, Gourine AV, Gourine A (2016) Glucagon-like peptide-1 (GLP-1) mediates cardioprotection by remote ischaemic conditioning. Cardiovasc Res 112:669–676. https://doi.org/10.1093/cvr/cvw216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Basalay M, Mastitskaya S, Mrochek A, Ackland GL, Arroyo AG, Sanchez J, Sjoquist PO, Pernow J, Gourine AV, Gourine A (2017) Reply: glucagon-like peptide-1 mediates cardioprotection by remote ischaemic conditioning. Cardiovasc Res. 113:13–14. https://doi.org/10.1093/cvr/cvw238

    Article  CAS  PubMed  Google Scholar 

  6. Behmenburg F, Heinen A, Bruch LV, Hollmann MW, Huhn R (2017) Cardioprotection by remote ischemic preconditioning is blocked in the aged rat heart in vivo. J Cardiothorac Vasc Anesth 31:1223–1226. https://doi.org/10.1053/j.jvca.2016.07.005

    Article  PubMed  Google Scholar 

  7. Behmenburg F, van Caster P, Bunte S, Brandenburger T, Heinen A, Hollmann MW, Huhn R (2018) Impact of anesthetic regimen on remote ischemic preconditioning in the rat heart in vivo. Anesth Analg 126:1377–1380. https://doi.org/10.1213/ANE.0000000000002563

    Article  PubMed  Google Scholar 

  8. Bunte S, Behmenburg F, Eckelskemper F, Mohr F, Stroethoff M, Raupach A, Heinen A, Hollmann MW, Huhn R (2019) Cardioprotection by humoral factors released after remote ischemic preconditioning depends on anesthetic regimen. Crit Care Med 47:e250–e255. https://doi.org/10.1097/CCM.0000000000003629

    Article  CAS  PubMed  Google Scholar 

  9. Cai ZP, Parajuli N, Zheng X, Becker L (2012) Remote ischemic preconditioning confers late protection against myocardial ischemia-reperfusion injury in mice by upregulating interleukin-10. Basic Res Cardiol 107:277. https://doi.org/10.1007/s00395-012-0277-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Candillio L, Malik A, Hausenloy DJ (2013) Protection of organs other than the heart by remote ischemic conditioning. J Cardiovasc Med (Hagerstown) 14:193–205. https://doi.org/10.2459/JCM.0b013e328359dd7b

    Article  Google Scholar 

  11. Cohen MV, Downey JM (2017) The impact of irreproducibility and competing protection from P2Y12 antagonists on the discovery of cardioprotective interventions. Basic Res Cardiol 26(112):64. https://doi.org/10.1007/s00395-017-0653-y

    Article  Google Scholar 

  12. Dickson EW, Lorbar M, Porcaro WA, Fenton RA, Reinhardt CP, Gysembergh A, Przyklenk K (1999) Rabbit heart can be "preconditioned" via transfer of coronary effluent. Am J Physiol 277:H2451–H2457. https://doi.org/10.1152/ajpheart.1999.277.6.H2451

    Article  CAS  PubMed  Google Scholar 

  13. Donato M, Buchholz B, Rodríguez M, Pérez V, Inserte J, García-Dorado D, Gelpi RJ (2013) Role of the parasympathetic nervous system in cardioprotection by remote hindlimb ischaemic preconditioning. Exp Physiol 98:425–434. https://doi.org/10.1113/expphysiol.2012.066217

    Article  PubMed  Google Scholar 

  14. Donato M, Goyeneche MA, Garces M, Marchini T, Perez V, Del Mauro J, Hocht C, Rodriguez M, Evelson P, Gelpi RJ (2016) Myocardial triggers involved in activation of remote ischaemic preconditioning. Exp Physiol 101:708–716. https://doi.org/10.1113/EP085535

    Article  CAS  PubMed  Google Scholar 

  15. Eid RA, Alkhateeb MA, Eleawa S, Al-Hashem FH, Al-Shraim M, El-Kott AF, Zaki MSA, Dallak MA, Aldera H (2018) Cardioprotective effect of ghrelin against myocardial infarction-induced left ventricular injury via inhibition of SOCS3 and activation of JAK2/STAT3 signaling. Basic Res Cardiol 1(113):13. https://doi.org/10.1007/s00395-018-0671-4

    Article  CAS  Google Scholar 

  16. Ferdinandy P, Hausenloy DJ, Heusch G, Baxter GF, Schulz R (2014) Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacol Rev 66:1142–1174. https://doi.org/10.1124/pr.113.008300

    Article  CAS  PubMed  Google Scholar 

  17. Foley RN (2008) Erythropoietin: physiology and molecular mechanisms. Heart Fail Rev 13:405–414. https://doi.org/10.1007/s10741-008-9083-0

    Article  CAS  PubMed  Google Scholar 

  18. Gaspar A, Lourenço AP, Pereira MÁ, Azevedo P, Roncon-Albuquerque R Jr, Marques J, Leite-Moreira AF (2018) Randomized controlled trial of remote ischaemic conditioning in ST-elevation myocardial infarction as adjuvant to primary angioplasty (RIC-STEMI). Basic Res Cardiol 7(113):14. https://doi.org/10.1007/s00395-018-0672-3

    Article  Google Scholar 

  19. Gedik N, Kottenberg E, Thielmann M, Frey UH, Jakob H, Peters J, Heusch G, Kleinbongard P (2017) Potential humoral mediators of remote ischemic preconditioning in patients undergoing surgical coronary revascularization. Sci Rep 4(7):12660. https://doi.org/10.1038/s41598-017-12833-2

    Article  CAS  Google Scholar 

  20. Gedik N, Thielmann M, Kottenberg E, Peters J, Jakob H, Heusch G, Kleinbongard P (2014) No evidence for activated autophagy in left ventricular myocardium at early reperfusion with protection by remote ischemic preconditioning in patients undergoing coronary artery bypass grafting. PLoS ONE 5(9):e96567. https://doi.org/10.1371/journal.pone.0096567

    Article  CAS  Google Scholar 

  21. Gourine A, Gourine AV (2014) Neural mechanisms of cardioprotection. Physiology (Bethesda) 29:133–140. https://doi.org/10.1152/physiol.00037.2013

    Article  CAS  Google Scholar 

  22. Gross ER, Hsu AK, Gross GJ (2006) The JAK/STAT pathway is essential for opioid-induced cardioprotection: JAK2 as a mediator of STAT3, Akt, and GSK-3 beta. Am J Physiol Heart Circ Physiol 291:H827–H834. https://doi.org/10.1152/ajpheart.00003.2006

    Article  CAS  PubMed  Google Scholar 

  23. Gross ER, Hsu AK, Urban TJ, Mochly-Rosen D, Gross GJ (2013) Nociceptive-induced myocardial remote conditioning is mediated by neuronal gamma protein kinase C. Basic Res Cardiol 108:381. https://doi.org/10.1007/s00395-013-0381-x

    Article  CAS  PubMed  Google Scholar 

  24. Grossini E, Raina G, Farruggio S, Camillo L, Molinari C, Mary D, Walker GE, Bona G, Vacca G, Moia S, Prodam F, Surico D (2016) Intracoronary des-acyl ghrelin acutely increases cardiac perfusion through a nitric oxide-related mechanism in female anesthetized pigs. Endocrinology 157:2403–2415. https://doi.org/10.1210/en.2015-1922

    Article  CAS  PubMed  Google Scholar 

  25. Harisseh R, Pillot B, Gharib A, Augeul L, Gallo-Bona N, Ferrera R, Loufouat J, Delale T, Allas S, Abribat T, Crola Da Silva C, Ovize M (2017) Unacylated ghrelin analog prevents myocardial reperfusion injury independently of permeability transition pore. Basic Res Cardiol 112:4. https://doi.org/10.1007/s00395-016-0595-9

    Article  CAS  PubMed  Google Scholar 

  26. Hausenloy DJ, Bøtker HE (2019) Why did remote ischaemic conditioning not improve clinical outcomes in acute myocardial infarction in the CONDI-2/ERIC-PPCI trial? Cardiovasc Res 1(115):e161–e163. https://doi.org/10.1093/cvr/cvz242

    Article  CAS  Google Scholar 

  27. Hausenloy DJ, Bøtker HE, Ferdinandy P, Heusch G, Ng GA, Redington A, Garcia-Dorado D (2019) Cardiac innervation in acute myocardial ischaemia/reperfusion injury and cardioprotection. Cardiovasc Res 1(115):1167–1177. https://doi.org/10.1093/cvr/cvz053

    Article  CAS  Google Scholar 

  28. Hausenloy DJ, Candilio L, Evans R, Ariti C, Jenkins DP, Kolvekar S, Knight R, Kunst G, Laing C, Nicholas J, Pepper J, Robertson S, Xenou M, Clayton T, Yellon DM, Trial Investigators ERICCA (2015) Remote ischemic preconditioning and outcomes of cardiac surgery. N Engl J Med 373:1408–1417. https://doi.org/10.1056/NEJMoa1413534

    Article  CAS  PubMed  Google Scholar 

  29. Hausenloy DJ, Iliodromitis EK, Andreadou I, Papalois A, Gritsopoulos G, Anastasiou-Nana M, Kremastinos DT, Yellon DM (2012) Investigating the signal transduction pathways underlying remote ischemic conditioning in the porcine heart. Cardiovasc Drugs Ther 26:87–93. https://doi.org/10.1007/s10557-011-6364-y

    Article  CAS  PubMed  Google Scholar 

  30. Hausenloy DJ, Kharbanda RK, Møller UK, Ramlall M, Aarøe J, Butler R, Bulluck H, Clayton T, Dana A, Dodd M, Engstrom T, Evans R, Lassen JF, Christensen EF, Garcia-Ruiz JM, Gorog DA, Hjort J, Houghton RF, Ibanez B, Knight R, Lippert FK, Lønborg JT, Maeng M, Milasinovic D, More R, Nicholas JM, Jensen LO, Perkins A, Radovanovic N, Rakhit RD, Ravkilde J, Ryding AD, Schmidt MR, Riddervold IS, Sørensen HT, Stankovic G, Varma M, Webb I, Terkelsen CJ, Greenwood JP, Yellon DM, Bøtker HE, CONDI-2, ERIC-PPCI Investigators (2019) Effect of remote ischaemic conditioning on clinical outcomes in patients with acute myocardial infarction (CONDI-2/ERIC-PPCI): a single-blind randomised controlled trial. Lancet 19(394):1415–1424. https://doi.org/10.1016/S0140-6736(19)32039-2

    Article  Google Scholar 

  31. Herring N, Paterson DJ (2001) Nitric oxide-cGMP pathway facilitates acetylcholine release and bradycardia during vagal nerve stimulation in the guinea-pig in vitro. J Physiol 535:507–518. https://doi.org/10.1111/j.1469-7793.2001.00507.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Heusch G (2013) Cardioprotection: chances and challenges of its translation to the clinic. Lancet 381:166–175. https://doi.org/10.1016/S0140-6736(12)60916-7

    Article  PubMed  Google Scholar 

  33. Heusch G (2017) Critical issues for the translation of cardioprotection. Circ Res 28(120):1477–1486. https://doi.org/10.1161/CIRCRESAHA.117.310820

    Article  CAS  Google Scholar 

  34. Heusch G (2017) Remote ischemic conditioning: the enigmatic transfer of protection. Cardiovasc Res 113:1–2. https://doi.org/10.1093/cvr/cvw240

    Article  CAS  PubMed  Google Scholar 

  35. Heusch G, Gersh BJ (2020) Is cardioprotection salvageable? Circulation 141(6):415–417. https://doi.org/10.1161/CIRCULATIONAHA.119.044176

    Article  PubMed  Google Scholar 

  36. Heusch G, Musiolik J, Gedik N, Skyschally A (2011) Mitochondrial STAT3 activation and cardioprotection by ischemic postconditioning in pigs with regional myocardial ischemia/reperfusion. Circ Res 109:1302–1308. https://doi.org/10.1161/CIRCRESAHA.111.255604

    Article  CAS  PubMed  Google Scholar 

  37. Heusch G, Musiolik J, Kottenberg E, Peters J, Jakob H, Thielmann M (2012) STAT5 activation and cardioprotection by remote ischemic preconditioning in humans: short communication. Circ Res 110:111–115. https://doi.org/10.1161/CIRCRESAHA.111.259556

    Article  CAS  PubMed  Google Scholar 

  38. Hildebrandt HA, Kreienkamp V, Gent S, Kahlert P, Heusch G, Kleinbongard P (2016) Kinetics and signal activation properties of circulating factor(s) from healthy volunteers undergoing remote ischemic pre-conditioning. JACC Basic Transl Sci 1:3–13. https://doi.org/10.1016/j.jacbts.2016.01.007

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hosoda H, Kojima M, Matsuo H, Kangawa K (2000) Ghrelin and des-acyl ghrelin: two major forms of rat ghrelin peptide in gastrointestinal tissue. Biochem Biophys Res Commun 279:909–913. https://doi.org/10.1006/bbrc.2000.4039

    Article  CAS  PubMed  Google Scholar 

  40. Huynh DN, Elimam H, Bessi VL, Ménard L, Burelle Y, Granata R, Carpentier AC, Ong H, Marleau S (2019) A linear fragment of unacylated ghrelin (UAG6-13) protects against myocardial ischemia/reperfusion injury in mice in a growth hormone secretagogue receptor-independent manner. Front Endocrinol (Lausanne) 11(9):798. https://doi.org/10.3389/fendo.2018.00798

    Article  Google Scholar 

  41. Ishikawa A, Ogawa K, Tokinaga Y, Uematsu N, Mizumoto K, Hatano Y (2007) The mechanism behind the inhibitory effect of isoflurane on angiotensin II-induced vascular contraction is different from that of sevoflurane. Anesth Analg 105:97–102. https://doi.org/10.1213/01.ane.0000265851.37923.ec

    Article  CAS  PubMed  Google Scholar 

  42. Jennings RB (2013) Historical perspective on the pathology of myocardial ischemia/reperfusion injury. Circ Res 113:428–438. https://doi.org/10.1161/CIRCRESAHA.113.300987

    Article  CAS  PubMed  Google Scholar 

  43. Johnsen J, Pryds K, Salman R, Løfgren B, Kristiansen SB, Bøtker HE (2016) The remote ischemic preconditioning algorithm: effect of number of cycles, cycle duration and effector organ mass on efficacy of protection. Basic Res Cardiol 111:10. https://doi.org/10.1007/s00395-016-0529-6

    Article  PubMed  Google Scholar 

  44. Kalakech H, Hibert P, Prunier-Mirebeau D, Tamareille S, Letournel F, Macchi L, Pinet F, Furber A, Prunier F (2014) RISK and SAFE signaling pathway involvement in apolipoprotein A-I-induced cardioprotection. PLoS ONE 9:e107950. https://doi.org/10.1371/journal.pone.0107950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kerendi F, Kin H, Halkos ME, Jiang R, Zatta AJ, Zhao ZQ, Guyton RA, Vinten-Johansen J (2005) Remote postconditioning. Brief renal ischemia and reperfusion applied before coronary artery reperfusion reduces myocardial infarct size via endogenous activation of adenosine receptors. Basic Res Cardiol 100:404–412. https://doi.org/10.1007/s00395-005-0539-2

    Article  CAS  PubMed  Google Scholar 

  46. Kharbanda RK, Mortensen UM, White PA, Kristiansen SB, Schmidt MR, Hoschtitzky JA, Vogel M, Sorensen K, Redington AN, MacAllister R (2002) Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation 106:2881–2883. https://doi.org/10.1161/01.CIR.0000043806.51912.9B

    Article  CAS  PubMed  Google Scholar 

  47. Kleinbongard P, Bøtker HE, Ovize M, Hausenloy DJ, Heusch G (2019) Co-morbidities and co-medications as confounders of cardioprotection—does it matter in the clinical setting? Br J Pharmacol. https://doi.org/10.1111/bph.14839

    Article  Google Scholar 

  48. Kleinbongard P, Skyschally A, Heusch G (2017) Cardioprotection by remote ischemic conditioning and its signal transduction. Pflug Arch 469:159–181. https://doi.org/10.1007/s00424-016-1922-6

    Article  CAS  Google Scholar 

  49. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402:656–660. https://doi.org/10.1038/45230

    Article  CAS  PubMed  Google Scholar 

  50. Kornyushin OV, Sonin DL, Toropova YG, Pochkaeva EI, Semikova GV, Berko OM, Zelinskaya IA, Todosenko NM, Litvinova LS, Neimark AE, Babenko AY, Dergach KV, Schpakov AO, Galagudza MM (2019) Effects of bariatric surgeries on the size of myocardial infarction and ghrelin level in rats with experimental decompensated type 2 diabetes mellitus. Bull Exp Biol Med 168:210–213. https://doi.org/10.1007/s10517-019-04676-w

    Article  CAS  PubMed  Google Scholar 

  51. Kottenberg E, Thielmann M, Bergmann L, Heine T, Jakob H, Heusch G, Peters J (2012) Protection by remote ischemic preconditioning during coronary artery bypass graft surgery with isoflurane but not propofol - a clinical trial. Acta Anaesthesiol Scand 56:30–38. https://doi.org/10.1111/j.1399-6576.2011.02585.x

    Article  CAS  PubMed  Google Scholar 

  52. Lambert EA, Thomas CJ, Hemmes R, Eikelis N, Pathak A, Schlaich MP, Lambert GW (2016) Sympathetic nervous response to ischemia-reperfusion injury in humans is altered with remote ischemic preconditioning. Am J Physiol Heart Circ Physiol 311:H364–H370. https://doi.org/10.1152/ajpheart.00369.2016

    Article  PubMed  Google Scholar 

  53. Lang SC, Elsässer A, Scheler C, Vetter S, Tiefenbacher CP, Kübler W, Katus HA, Vogt AM (2006) Myocardial preconditioning and remote renal preconditioning–identifying a protective factor using proteomic methods? Basic Res Cardiol 101:149–158. https://doi.org/10.1007/s00395-005-0565-0

    Article  CAS  PubMed  Google Scholar 

  54. Lieder HR, Irmert A, Kamler M, Heusch G, Kleinbongard P (2019) Sex is no determinant of cardioprotection by ischemic preconditioning in rats, but ischemic/reperfused tissue mass is for remote ischemic preconditioning. Physiol Rep 7:e14146. https://doi.org/10.14814/phy2.14146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lieder HR, Kleinbongard P, Skyschally A, Hagelschuer H, Chilian WM, Heusch G (2018) Vago-splenic axis in signal transduction of remote ischemic preconditioning in pigs and rats. Circ Res 123(10):1152–1163. https://doi.org/10.1161/CIRCRESAHA.118.313859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liem DA, Verdouw PD, Ploeg H, Kazim S, Duncker DJ (2002) Sites of action of adenosine in interorgan preconditioning of the heart. Am J Physiol Heart Circ Physiol 283:H29–37. https://doi.org/10.1152/ajpheart.01031.2001

    Article  CAS  PubMed  Google Scholar 

  57. Lu Y, Wong GT, Zhang Y, Hu J, Dong C (2014) Remote intrathecal morphine preconditioning is ineffective in the presence of neuraxial blockade with lidocaine. Kaohsiung J Med Sci 30:68–72. https://doi.org/10.1016/j.kjms.2013.10.007

    Article  PubMed  Google Scholar 

  58. Maciel L, de Oliveira DF, Verissimo da Costa GC, Bisch PM, Nascimento JHM (2017) Cardioprotection by the transfer of coronary effluent from ischaemic preconditioned rat hearts: identification of cardioprotective humoral factors. Basic Res Cardiol 112:52. https://doi.org/10.1007/s00395-017-0641-2

    Article  CAS  PubMed  Google Scholar 

  59. Mastitskaya S, Basalay M, Hosford PS, Ramage AG, Gourine A, Gourine AV (2016) Identifying the source of a humoral factor of remote (pre)conditioning cardioprotection. PLoS ONE 11:e0150108. https://doi.org/10.1371/journal.pone.0150108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Meybohm P, Bein B, Brosteanu O, Cremer J, Gruenewald M, Stoppe C, Coburn M, Schaelte G, Böning A, Niemann B, Roesner J, Kletzin F, Strouhal U, Reyher C, Laufenberg-Feldmann R, Ferner M, Brandes IF, Bauer M, Stehr SN, Kortgen A, Wittmann M, Baumgarten G, Meyer-Treschan T, Kienbaum P, Heringlake M, Schön J, Sander M, Treskatsch S, Smul T, Wolwender E, Schilling T, Fuernau G, Hasenclever D, Zacharowski K, RIPHeart Study Collaborators (2015) RIPHeart Study Collaborators: a multicenter trial of remote ischemic preconditioning for heart surgery. N Engl J Med 373:1397–1407. https://doi.org/10.1056/NEJMoa1413579

    Article  CAS  PubMed  Google Scholar 

  61. Mastitskaya S, Marina N, Gourine A, Gilbey MP, Spyer KM, Teschemacher AG, Kasparov S, Trapp S, Ackland GL, Gourine AV (2012) Cardioprotection evoked by remote ischaemic preconditioning is critically dependent on the activity of vagal pre-ganglionic neurones. Cardiovasc Res 95:487–494. https://doi.org/10.1093/cvr/cvs212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136. https://doi.org/10.1161/01.cir.74.5.1124

    Article  CAS  PubMed  Google Scholar 

  63. Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87:165–217. https://doi.org/10.1152/physrev.00021.2006

    Article  CAS  PubMed  Google Scholar 

  64. Ochiai Y, Baba A, Hiramatsu M, Toyota N, Watanabe T, Yamashita K, Yokota H, Iwano H (2018) Blood biochemistry and hematological changes in rats after administration of a mixture of three anesthetic agents. J Vet Med Sci 80:387–394. https://doi.org/10.1292/jvms.17-0497

    Article  CAS  PubMed  Google Scholar 

  65. Okerson T, Chilton RJ (2012) The cardiovascular effects of GLP-1 receptor agonists. Cardiovasc Ther 30:e146–e155. https://doi.org/10.1111/j.1755-5922.2010.00256.x

    Article  CAS  PubMed  Google Scholar 

  66. Pei XM, Yung BY, Yip SP, Ying M, Benzie IF, Siu PM (2014) Desacyl ghrelin prevents doxorubicin-induced myocardial fibrosis and apoptosis via the GHSR-independent pathway. Am J Physiol Endocrinol Metab 306:E311–E323. https://doi.org/10.1152/ajpendo.00123.2013

    Article  CAS  PubMed  Google Scholar 

  67. Pickard JM, Davidson SM, Hausenloy DJ, Yellon DM (2016) Co-dependence of the neural and humoral pathways in the mechanism of remote ischemic conditioning. Basic Res Cardiol 111:50. https://doi.org/10.1007/s00395-016-0568-z

    Article  PubMed  PubMed Central  Google Scholar 

  68. Post H, Schulz R, Behrends M, Gres P, Umschlag C, Heusch G (2000) No involvement of endogenous nitric oxide in classical ischemic preconditioning in swine. J Mol Cell Cardiol 32:725–733. https://doi.org/10.1006/jmcc.2000.1117

    Article  CAS  PubMed  Google Scholar 

  69. Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P (1993) Regional ischemic `preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 87:893–899. https://doi.org/10.1161/01.cir.87.3.893

    Article  CAS  PubMed  Google Scholar 

  70. Rassaf T, Totzeck M, Hendgen-Cotta UB, Shiva S, Heusch G, Kelm M (2014) Circulating nitrite contributes to cardioprotection by remote ischemic preconditioning. Circ Res 114:1601–1610. https://doi.org/10.1161/CIRCRESAHA.114.303822

    Article  CAS  PubMed  Google Scholar 

  71. Rosas-Ballina M, Olofsson PS, Ochani M, Valdés-Ferrer SI, Levine YA, Reardon C, Tusche MW, Pavlov VA, Andersson U, Chavan S, Mak TW, Tracey KJ (2011) Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334:98–101. https://doi.org/10.1126/science.1209985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schmidt MR, Smerup M, Konstantinov IE, Shimizu M, Li J, Cheung M, White PA, Kristiansen SB, Sorensen K, Dzavik V, Redington AN, Kharbanda RK (2007) Intermittent peripheral tissue ischemia during coronary ischemia reduces myocardial infarction through a KATP-dependent mechanism: first demonstration of remote ischemic perconditioning. Am J Physiol Heart Circ Physiol 292:H1883–H1890. https://doi.org/10.1152/ajpheart.00617.2006

    Article  CAS  PubMed  Google Scholar 

  73. Schoemaker RG, van Heijningen CL (2000) Bradykinin mediates cardiac preconditioning at a distance. Am J Physiol Heart Circ Physiol 278:H1571–H1576. https://doi.org/10.1152/ajpheart.2000.278.5.H1571

    Article  CAS  PubMed  Google Scholar 

  74. Serejo FC, Rodrigues LF Jr, da Silva Tavares KC, de Carvalho AC, Nascimento JH (2007) Cardioprotective properties of humoral factors released from rat hearts subjects to ischemic preconditioning. J Cardiovasc Pharmacol 49:214–220. https://doi.org/10.1097/FJC.0b013e3180325ad9

    Article  CAS  PubMed  Google Scholar 

  75. Shahid M, Tauseef M, Sharma KK, Fahim M (2008) Brief femoral artery ischaemia provides protection against myocardial ischaemia-reperfusion injury in rats: the possible mechanisms. Exp Physiol 93:954–968. https://doi.org/10.1113/expphysiol.2007.041442

    Article  CAS  PubMed  Google Scholar 

  76. Shimizu M, Tropak M, Diaz RJ, Suto F, Surendra H, Kuzmin E, Li J, Gross G, Wilson GJ, Callahan J, Redington AN (2009) Transient limb ischemia remotely preconditions through a humoral mechanism acting directly on the myocardium: evidence suggesting cross-species protection. Clin Sci (Lond) 117:191–200. https://doi.org/10.1042/CS20080523

    Article  CAS  Google Scholar 

  77. Singh A, Randhawa PK, Bali A, Singh N, Jaggi AS (2017) Exploring the role of TRPV and CGRP in adenosine preconditioning and remote hind limb preconditioning-induced cardioprotection in rats. Cardiovasc Drugs Ther 31:133–143. https://doi.org/10.1007/s10557-017-6716-3

    Article  CAS  PubMed  Google Scholar 

  78. Skyschally A, Gent S, Amanakis G, Schulte C, Kleinbongard P, Heusch G (2015) Across-species transfer of protection by remote ischemic preconditioning with species-specific myocardial signal transduction by reperfusion injury salvage kinase and survival activating factor enhancement pathways. Circ Res 117:279–288. https://doi.org/10.1161/CIRCRESAHA.117.306878

    Article  CAS  PubMed  Google Scholar 

  79. Staes E, Absil PA, Lins L, Brasseur R, Deleu M, Lecouturier N, Fievez V, Rieux Ad, Mingeot-Leclercq MP, Raussens V, Préat V (2010) Acylated and unacylated ghrelin binding to membranes and to ghrelin receptor: towards a better understanding of the underlying mechanisms. Biochim Biophys Acta 1798:2102–2113. https://doi.org/10.1016/j.bbamem.2010.07.002

    Article  CAS  PubMed  Google Scholar 

  80. Steensrud T, Li J, Dai X, Manlhiot C, Kharbanda RK, Tropak M, Redington A (2010) Pretreatment with the nitric oxide donor SNAP or nerve transection blocks humoral preconditioning by remote limb ischemia or intra-arterial adenosine. Am J Physiol Heart Circ Physiol 299:H1598–H1603. https://doi.org/10.1152/ajpheart.00396.2010

    Article  CAS  PubMed  Google Scholar 

  81. Sun N, Wang H, Wang L (2016) Protective effects of ghrelin against oxidative stress, inducible nitric oxide synthase and inflammation in a mouse model of myocardial ischemia/reperfusion injury via the HMGB1 and TLR4/NF-κB pathway. Mol Med Rep 14:2764–2770. https://doi.org/10.3892/mmr.2016.5535

    Article  CAS  PubMed  Google Scholar 

  82. Taylor EW, Leite CA, Sartori MR, Wang T, Abe AS, Crossley DA II (2014) The phylogeny and ontogeny of autonomic control of the heart and cardiorespiratory interactions in vertebrates. J Exp Biol 217:690–703. https://doi.org/10.1242/jeb.086199

    Article  PubMed  Google Scholar 

  83. Thielmann M, Kottenberg E, Kleinbongard P, Wendt D, Gedik N, Pasa S, Price V, Tsagakis K, Neuhäuser M, Peters J, Jakob H, Heusch G (2013) Cardioprotective and prognostic effects of remote ischaemic preconditioning in patients undergoing coronary artery bypass surgery: a single-centre randomised, double-blind, controlled trial. Lancet 382:597–604. https://doi.org/10.1016/S0140-6736(13)61450-6

    Article  PubMed  Google Scholar 

  84. van der Lely AJ, Tschöp M, Heiman ML, Ghigo E (2004) Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin. Endocr Rev 25:426–457. https://doi.org/10.1210/er.2002-0029

    Article  CAS  PubMed  Google Scholar 

  85. Veedfald S, Plamboeck A, Hartmann B, Vilsbøll T, Knop FK, Deacon CF, Svendsen LB, Holst JJ (2018) Ghrelin secretion in humans—a role for the vagus nerve? Neurogastroenterol Motil 30:e13295. https://doi.org/10.1111/nmo.13295

    Article  CAS  PubMed  Google Scholar 

  86. Wang Q, Liu GP, Xue FS, Wang SY, Cui XL, Li RP, Yang GZ, Sun C, Liao X (2015) Combined vagal stimulation and limb remote ischemic perconditioning enhances cardioprotection via an anti-inflammatory pathway. Inflammation 38:1748–1760. https://doi.org/10.1007/s10753-015-0152-y

    Article  CAS  PubMed  Google Scholar 

  87. Williams DL, Grill HJ, Cummings DE, Kaplan JM (2003) Vagotomy dissociates short- and long-term controls of circulating ghrelin. Endocrinology 144:5184–5187. https://doi.org/10.1210/en.2003-1059

    Article  CAS  PubMed  Google Scholar 

  88. Verouhis D, Sörensson P, Gourine A, Henareh L, Persson J, Saleh N, Settergren M, Sundqvist M, Tengbom J, Tornvall P, Witt N, Böhm F, Pernow J (2020) Long-term effect of remote ischemic conditioning on infarct size and clinical outcomes in patients with anterior ST-elevation myocardial infarction. Catheter Cardiovasc Interv. https://doi.org/10.1002/ccd.28760

    Article  PubMed  Google Scholar 

  89. Yang XM, Liu Y, Cui L, Yang X, Liu Y, Tandon N, Kambayashi J, Downey JM, Cohen MV (2013) Platelet P2Y12 blockers confer direct postconditioning-like protection in reperfused rabbit hearts. J Cardiovasc Pharmacol Ther 18:251–262. https://doi.org/10.1177/1074248412467692

    Article  CAS  PubMed  Google Scholar 

  90. Yoshikawa Y, Hirata N, Kawaguchi R, Tokinaga Y, Yamakage M (2018) Dexmedetomidine maintains its direct cardioprotective effect against ischemia/reperfusion injury in hypertensive hypertrophied myocardium. Anesth Analg 126:443–452. https://doi.org/10.1213/ANE.0000000000002452

    Article  CAS  PubMed  Google Scholar 

  91. Zernecke A, Preissner KT (2016) Extracellular ribonucleic acids (RNA) enter the stage in cardiovascular disease. Circ Res 118:469–479. https://doi.org/10.1161/CIRCRESAHA.115.307961

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Keiko Onishi, and Yuri Horiguchi, research technologists (Department of Anesthesiology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan), for their technical assistance.

Funding

This study was supported by Grant-in-Aid for Early-Career Scientists (Grant no. 18K16486) from the Ministry of Education, Science and Culture of Japan.

Author information

Authors and Affiliations

Authors

Contributions

YS wrote the manuscript; YS performed the animal studies; NH, YY, HT and YT helped the animal studies; NH and MY reviewed and edited the manuscript.

Corresponding author

Correspondence to Yasuaki Sawashita.

Ethics declarations

Conflict of interest

None of the authors declare any competing interests.

Ethics approval

This animal study was approved by the Institutional Animal Care and Use Committee of Sapporo Medical University (No. 17-117,118).

Electronic supplementary material

Below is the link to the electronic supplementary material.

395_2020_809_MOESM1_ESM.tif

Online resource 1: Plasma concentrations of acylated ghrelin in control and RIPC groups. Blood samples in the two groups were collected pre and post the RIPC procedure. Data are shown as mean (pg/mL) ± SEM, n = 8 rats per group. No significant differences were observed by two-way ANOVA followed by Tukey post hoc test (TIF 57 kb)

395_2020_809_MOESM2_ESM.tif

Online resource 2: The result of all Western blot of the STAT3tyr705 phosphorylation in rat myocardium m. Data are shown numerically as the ratio of phosphorylated STAT3 and total STAT3 (TIF 225 kb)

395_2020_809_MOESM3_ESM.tif

Online resource 3: Plasma concentrations of unacylated ghrelin (UAG) after administration of various UAG doses. Blood samples in each group were collected before and 30 minutes after administration of UAG. Data are shown as mean (pg/mL) ± SEM, n = 8 rats per group. *: P < 0.05 vs. ‘pre’ in each group, as assessed by two-way ANOVA followed by Tukey post hoc test. Abbreviations: pre, before UAG administration; post, 30 minutes after UAG administration; CON, control group; UAG 0.25, 0.25 mcg/kg UAG administration group; UAG 0.5, 0.5 mcg/kg UAG administration group; UAG 1, 1 mcg/kg UAG administration group (TIF 59 kb)

395_2020_809_MOESM4_ESM.tif

Online resource 4: Area at risk in the seven groups. The area at risk is presented as a percentage of the left ventricle. Data are shown as mean % ± SEM, n = 8 rats per group. No significant difference was observed between groups, as assessed by one-way ANOVA followed by Tukey post hoc test. Abbreviations: CON, control group; UAG, unacylated ghrelin; UAG 0.25, 0.25 mcg/kg UAG administration group; UAG 0.5, 0.5 mcg/kg UAG administration group; UAG 1, 1 mcg/kg UAG administration group; UAG 2, 2 mcg/kg UAG administration group; UAG 20, 20 mcg/kg UAG administration group; UAG 30, 30 mcg/kg UAG administration group (TIF 70 kb)

395_2020_809_MOESM5_ESM.tif

Online resource 5: Infarct size in the seven groups. Infarct size is presented as a percentage of the area at risk. Data are shown as mean % ± SEM, n = 8 rats per group. *: P < 0.05 vs. CON, †: P < 0.05 vs. UAG 0.25 as assessed by one-way ANOVA followed by Tukey post hoc test. Abbreviations: CON, control group; UAG, unacylated ghrelin; UAG 0.25, 0.25 mcg/kg UAG administration group; UAG 0.5, 0.5 mcg/kg UAG administration group; UAG 1, 1 mcg/kg UAG administration group; UAG 2, 2 mcg/kg UAG administration group; UAG 20, 20 mcg/kg UAG administration group; UAG 30, 30 mcg/kg UAG administration group (TIF 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawashita, Y., Hirata, N., Yoshikawa, Y. et al. Remote ischemic preconditioning reduces myocardial ischemia–reperfusion injury through unacylated ghrelin-induced activation of the JAK/STAT pathway. Basic Res Cardiol 115, 50 (2020). https://doi.org/10.1007/s00395-020-0809-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-020-0809-z

Keywords

Navigation