Skip to main content

Advertisement

Log in

Cardiomyocyte Ogt limits ventricular dysfunction in mice following pressure overload without affecting hypertrophy

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

The myocardial response to pressure overload involves coordination of multiple transcriptional, posttranscriptional, and metabolic cues. The previous studies show that one such metabolic cue, O-GlcNAc, is elevated in the pressure-overloaded heart, and the increase in O-GlcNAcylation is required for cardiomyocyte hypertrophy in vitro. Yet, it is not clear whether and how O-GlcNAcylation participates in the hypertrophic response in vivo. Here, we addressed this question using patient samples and a preclinical model of heart failure. Protein O-GlcNAcylation levels were increased in myocardial tissue from heart failure patients compared with normal patients. To test the role of OGT in the heart, we subjected cardiomyocyte-specific, inducibly deficient Ogt (i-cmOgt −/−) mice and Ogt competent littermate wild-type (WT) mice to transverse aortic constriction. Deletion of cardiomyocyte Ogt significantly decreased O-GlcNAcylation and exacerbated ventricular dysfunction, without producing widespread changes in metabolic transcripts. Although some changes in hypertrophic and fibrotic signaling were noted, there were no histological differences in hypertrophy or fibrosis. We next determined whether significant differences were present in i-cmOgt −/− cardiomyocytes from surgically naïve mice. Interestingly, markers of cardiomyocyte dedifferentiation were elevated in Ogt-deficient cardiomyocytes. Although no significant differences in cardiac dysfunction were apparent after recombination, it is possible that such changes in dedifferentiation markers could reflect a larger phenotypic shift within the Ogt-deficient cardiomyocytes. We conclude that cardiomyocyte Ogt is not required for cardiomyocyte hypertrophy in vivo; however, loss of Ogt may exert subtle phenotypic differences in cardiomyocytes that sensitize the heart to pressure overload-induced ventricular dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

HBP:

Hexosamine biosynthetic pathway

O-GlcNAc:

β-O-Linked N-acetylglucosamine

OGT:

O-GlcNAc transferase

OGA:

O-GlcNAcase

TAC:

Transverse aortic constriction

PFK1:

Phosphofructokinase-1

GFPT1:

Glutamine fructose-6-phosphate transaminase 1

GFPT2:

Glutamine fructose-6-phosphate transaminase 2

PGC1α:

Peroxisome proliferator-activated receptor gamma, co-activator 1 alpha

PGC1β:

Peroxisome proliferator-activated receptor gamma, co-activator 1 beta

CPT1b:

Carnitine palmitoyltransferase 1b

CPT2:

Carnitine palmitoyltransferase 2

MCAD:

Medium-chain acyl-CoA dehydrogenase

PPARα:

Peroxisome proliferator-activated receptor alpha

SLC2A1:

Solute carrier family 2 (facilitated glucose transporter), member 1

SLC2A4:

Solute carrier family 2 (facilitated glucose transporter), member 4

SERCA 2a:

Sarco/endoplasmic reticulum Ca2+-ATPase

CALM1:

Calmodulin 1

ANP:

Atrial natriuretic peptide

BNP:

Brain natriuretic peptide

TGFβ1:

Transforming growth factor 1

TGFβ2:

Transforming growth factor 2

TGFβ3:

Transforming growth factor 1

FGF2:

Fibroblast growth factor 2

CTGF:

Connective tissue growth factor

COL1α1:

Collagen, type I, alpha 1

COL1α2:

Collagen, type I, alpha 2

COL3α1:

Collagen, type 3, alpha 1

COL4α1:

Collagen, type 4, alpha 1

MMP2:

Matrix metallopeptidase 2

TIMP2:

Metallopeptidase inhibitor 2

ZEB1:

Zinc finger E-box-binding homeobox 1

ZEB2:

Zinc finger E-box-binding homeobox 2

SNAI1:

Snail family zinc finger1

SNAI2:

Snail family zinc finger1

TWI:

Twist basic helix-loop-helix transcription factor 1

VIM:

Vimentin

FN1:

Fibronectin 1

POSTN:

Periostin

MYH6:

Alpha myosin heavy chain

MHY7:

Beta myosin heavy chain

NKX 2-5:

NK2 homeobox 5

MEF2C:

Myocyte enhancer factor 2C

GATA4:

GATA-binding protein 4

ACTA2:

Actin, alpha 2, smooth muscle

BCL2:

B-cell lymphoma 2

VEGFA:

Vascular endothelial growth factor A

References

  1. Akao M, Ohler A, O’Rourke B, Marban E (2001) Mitochondrial ATP-sensitive potassium channels inhibit apoptosis induced by oxidative stress in cardiac cells. Circ Res 88:1267–1275. doi:10.1161/hh1201.092094

    Article  CAS  PubMed  Google Scholar 

  2. Bisping E, Ikeda S, Kong SW, Tarnavski O, Bodyak N, McMullen JR, Rajagopal S, Son JK, Ma Q, Springer Z, Kang PM, Izumo S, Pu WT (2006) Gata4 is required for maintenance of postnatal cardiac function and protection from pressure overload-induced heart failure. Proc Natl Acad Sci USA 103:14471–14476. doi:10.1073/pnas.0602543103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Condorelli G, Roncarati R, Ross J Jr, Pisani A, Stassi G, Todaro M, Trocha S, Drusco A, Gu Y, Russo MA, Frati G, Jones SP, Lefer DJ, Napoli C, Croce CM (2001) Heart-targeted overexpression of caspase3 in mice increases infarct size and depresses cardiac function. Proc Natl Acad Sci USA 98:9977–9982. doi:10.1073/pnas.161120198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cushing MC, Mariner PD, Liao JT, Sims EA, Anseth KS (2008) Fibroblast growth factor represses Smad-mediated myofibroblast activation in aortic valvular interstitial cells. FASEB J 22:1769–1777. doi:10.1096/fj.07-087627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dassanayaka S, Readnower RD, Salabei JK, Long BW, Aird AL, Zheng YT, Muthusamy S, Facundo HT, Hill BG, Jones SP (2015) High glucose induces mitochondrial dysfunction independently of protein O-GlcNAcylation. Biochem J 467:115–126. doi:10.1042/BJ20141018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Facundo HT, Brainard RE, Watson LJ, Ngoh GA, Hamid T, Prabhu SD, Jones SP (2012) O-GlcNAc signaling is essential for NFAT-mediated transcriptional reprogramming during cardiomyocyte hypertrophy. Am J Physiol Heart Circ Physiol 302:H2122–H2130. doi:10.1152/ajpheart.00775.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fedak PW, Bai L, Turnbull J, Ngu J, Narine K, Duff HJ (2012) Cell therapy limits myofibroblast differentiation and structural cardiac remodeling: basic fibroblast growth factor-mediated paracrine mechanism. Circ Heart Fail 5:349–356. doi:10.1161/CIRCHEARTFAILURE.111.965889

    Article  CAS  PubMed  Google Scholar 

  8. Greer JJ, Kakkar AK, Elrod JW, Watson LJ, Jones SP, Lefer DJ (2006) Low-dose simvastatin improves survival and ventricular function via eNOS in congestive heart failure. Am J Physiol Heart Circ Physiol 291:H2743–H2751. doi:10.1152/ajpheart.00347.2006

    Article  CAS  PubMed  Google Scholar 

  9. Hakuno D, Kimura N, Yoshioka M, Mukai M, Kimura T, Okada Y, Yozu R, Shukunami C, Hiraki Y, Kudo A, Ogawa S, Fukuda K (2010) Periostin advances atherosclerotic and rheumatic cardiac valve degeneration by inducing angiogenesis and MMP production in humans and rodents. J Clin Invest 120:2292–2306. doi:10.1172/JCI40973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jones SP, Greer JJ, van Haperen R, Duncker DJ, de Crom R, Lefer DJ (2003) Endothelial nitric oxide synthase overexpression attenuates congestive heart failure in mice. Proc Natl Acad Sci USA 100:4891–4896. doi:10.1073/pnas.0837428100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jones SP, Greer JJ, Ware PD, Yang J, Walsh K, Lefer DJ (2005) Deficiency of iNOS does not attenuate severe congestive heart failure in mice. Am J Physiol Heart Circ Physiol 288:H365–H370. doi:10.1152/ajpheart.00245.2004

    Article  CAS  PubMed  Google Scholar 

  12. Jones SP, Zachara NE, Ngoh GA, Hill BG, Teshima Y, Bhatnagar A, Hart GW, Marban E (2008) Cardioprotection by N-acetylglucosamine linkage to cellular proteins. Circulation 117:1172–1182. doi:10.1161/CIRCULATIONAHA.107.730515

    Article  CAS  PubMed  Google Scholar 

  13. Kovacic JC, Mercader N, Torres M, Boehm M, Fuster V (2012) Epithelial-to-mesenchymal and endothelial-to-mesenchymal transition: from cardiovascular development to disease. Circulation 125:1795–1808. doi:10.1161/CIRCULATIONAHA.111.040352

    Article  PubMed  PubMed Central  Google Scholar 

  14. Li M, Krishnaveni MS, Li C, Zhou B, Xing Y, Banfalvi A, Li A, Lombardi V, Akbari O, Borok Z, Minoo P (2011) Epithelium-specific deletion of TGF-beta receptor type II protects mice from bleomycin-induced pulmonary fibrosis. J Clin Invest 121:277–287. doi:10.1172/JCI42090

    Article  CAS  PubMed  Google Scholar 

  15. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  16. Louch WE, Sheehan KA, Wolska BM (2011) Methods in cardiomyocyte isolation, culture, and gene transfer. J Mol Cell Cardiol 51:288–298. doi:10.1016/j.yjmcc.2011.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lunde IG, Aronsen JM, Kvaloy H, Qvigstad E, Sjaastad I, Tonnessen T, Christensen G, Gronning-Wang LM, Carlson CR (2012) Cardiac O-GlcNAc signaling is increased in hypertrophy and heart failure. Physiol Genomics 44:162–172. doi:10.1152/physiolgenomics.00016.2011

    Article  CAS  PubMed  Google Scholar 

  18. Ngoh GA, Facundo HT, Hamid T, Dillmann W, Zachara NE, Jones SP (2009) Unique hexosaminidase reduces metabolic survival signal and sensitizes cardiac myocytes to hypoxia/reoxygenation injury. Circ Res 104:41–49. doi:10.1161/CIRCRESAHA.108.189431

    Article  CAS  PubMed  Google Scholar 

  19. Ngoh GA, Hamid T, Prabhu SD, Jones SP (2009) O-GlcNAc signaling attenuates ER stress-induced cardiomyocyte death. Am J Physiol Heart Circ Physiol 297:H1711–H1719. doi:10.1152/ajpheart.00553.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ngoh GA, Watson LJ, Facundo HT, Dillmann W, Jones SP (2008) Non-canonical glycosyltransferase modulates post-hypoxic cardiac myocyte death and mitochondrial permeability transition. J Mol Cell Cardiol 45:313–325. doi:10.1016/j.yjmcc.2008.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ngoh GA, Watson LJ, Facundo HT, Jones SP (2011) Augmented O-GlcNAc signaling attenuates oxidative stress and calcium overload in cardiomyocytes. Amino Acids 40:895–911. doi:10.1007/s00726-010-0728-7

    Article  CAS  PubMed  Google Scholar 

  22. O’Donnell N, Zachara NE, Hart GW, Marth JD (2004) Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability. Mol Cell Biol 24:1680–1690

    Article  PubMed  PubMed Central  Google Scholar 

  23. Oka T, Maillet M, Watt AJ, Schwartz RJ, Aronow BJ, Duncan SA, Molkentin JD (2006) Cardiac-specific deletion of Gata4 reveals its requirement for hypertrophy, compensation, and myocyte viability. Circ Res 98:837–845. doi:10.1161/01.RES.0000215985.18538.c4

    Article  CAS  PubMed  Google Scholar 

  24. Park SY, Kim HS, Kim NH, Ji S, Cha SY, Kang JG, Ota I, Shimada K, Konishi N, Nam HW, Hong SW, Yang WH, Roth J, Yook JI, Cho JW (2010) Snail1 is stabilized by O-GlcNAc modification in hyperglycaemic condition. EMBO J 29:3787–3796. doi:10.1038/emboj.2010.254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Powell T, Twist VW (1976) A rapid technique for the isolation and purification of adult cardiac muscle cells having respiratory control and a tolerance to calcium. Biochem Biophys Res Commun 72:327–333

    Article  CAS  PubMed  Google Scholar 

  26. Readnower RD, Brainard RE, Hill BG, Jones SP (2012) Standardized bioenergetic profiling of adult mouse cardiomyocytes. Physiol Genomics 44:1208–1213. doi:10.1152/physiolgenomics.00129.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sanford LP, Ormsby I, Gittenberger-de Groot AC, Sariola H, Friedman R, Boivin GP, Cardell EL, Doetschman T (1997) TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development 124:2659–2670

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sansbury BE, DeMartino AM, Xie Z, Brooks AC, Brainard RE, Watson LJ, DeFilippis AP, Cummins TD, Harbeson MA, Brittian KR, Prabhu SD, Bhatnagar A, Jones SP, Hill BG (2014) Metabolomic analysis of pressure-overloaded and infarcted mouse hearts. Circ Heart Fail 7:634–642. doi:10.1161/CIRCHEARTFAILURE.114.001151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sansbury BE, Jones SP, Riggs DW, Darley-Usmar VM, Hill BG (2011) Bioenergetic function in cardiovascular cells: the importance of the reserve capacity and its biological regulation. Chem Biol Interact 191:288–295. doi:10.1016/j.cbi.2010.12.002

    Article  CAS  PubMed  Google Scholar 

  30. Sansbury BE, Riggs DW, Brainard RE, Salabei JK, Jones SP, Hill BG (2011) Responses of hypertrophied myocytes to reactive species: implications for glycolysis and electrophile metabolism. Biochem J 435:519–528. doi:10.1042/BJ20101390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Santiago JJ, McNaughton LJ, Koleini N, Ma X, Bestvater B, Nickel BE, Fandrich RR, Wigle JT, Freed DH, Arora RC, Kardami E (2014) High molecular weight fibroblast growth factor-2 in the human heart is a potential target for prevention of cardiac remodeling. PLoS One 9:e97281. doi:10.1371/journal.pone.0097281

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sohal DS, Nghiem M, Crackower MA, Witt SA, Kimball TR, Tymitz KM, Penninger JM, Molkentin JD (2001) Temporally regulated and tissue-specific gene manipulations in the adult and embryonic heart using a tamoxifen-inducible Cre protein. Circ Res 89:20–25

    Article  CAS  PubMed  Google Scholar 

  33. Teshima Y, Akao M, Jones SP, Marban E (2003) Uncoupling protein-2 overexpression inhibits mitochondrial death pathway in cardiomyocytes. Circ Res 93:192–200. doi:10.1161/01.RES.0000085581.60197.4D

    Article  CAS  PubMed  Google Scholar 

  34. von Gise A, Pu WT (2012) Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease. Circ Res 110:1628–1645. doi:10.1161/CIRCRESAHA.111.259960

    Article  Google Scholar 

  35. Wang J, Wang Q, Watson LJ, Jones SP, Epstein PN (2011) Cardiac overexpression of 8-oxoguanine DNA glycosylase 1 protects mitochondrial DNA and reduces cardiac fibrosis following transaortic constriction. Am J Physiol Heart Circ Physiol 301:H2073–H2080. doi:10.1152/ajpheart.00157.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang J, Xu J, Wang Q, Brainard RE, Watson LJ, Jones SP, Epstein PN (2013) Reduced cardiac fructose 2,6 bisphosphate increases hypertrophy and decreases glycolysis following aortic constriction. PLoS One 8:e53951. doi:10.1371/journal.pone.0053951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang Q, Donthi RV, Wang J, Lange AJ, Watson LJ, Jones SP, Epstein PN (2008) Cardiac phosphatase-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase increases glycolysis, hypertrophy, and myocyte resistance to hypoxia. Am J Physiol Heart Circ Physiol 294:H2889–H2897. doi:10.1152/ajpheart.91501.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Watson LJ, Facundo HT, Ngoh GA, Ameen M, Brainard RE, Lemma KM, Long BW, Prabhu SD, Xuan YT, Jones SP (2010) O-linked beta-N-acetylglucosamine transferase is indispensable in the failing heart. Proc Natl Acad Sci USA 107:17797–17802. doi:10.1073/pnas.1001907107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Watson LJ, Long BW, DeMartino AM, Brittian KR, Readnower RD, Brainard RE, Cummins TD, Annamalai L, Hill BG, Jones SP (2014) Cardiomyocyte Ogt is essential for postnatal viability. Am J Physiol Heart Circ Physiol 306:H142–H153. doi:10.1152/ajpheart.00438.2013

    Article  CAS  PubMed  Google Scholar 

  40. Wolska BM, Solaro RJ (1996) Method for isolation of adult mouse cardiac myocytes for studies of contraction and microfluorimetry. Am J Physiol 271:H1250–H1255

    CAS  PubMed  Google Scholar 

  41. Zachara NE, O’Donnell N, Cheung WD, Mercer JJ, Marth JD, Hart GW (2004) Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. J Biol Chem 279:30133–30142. doi:10.1074/jbc.M403773200

    Article  CAS  PubMed  Google Scholar 

  42. Zafir A, Readnower R, Long BW, McCracken J, Aird A, Alvarez A, Cummins TD, Li Q, Hill BG, Bhatnagar A, Prabhu SD, Bolli R, Jones SP (2013) Protein O-GlcNAcylation is a novel cytoprotective signal in cardiac stem cells. Stem Cells 31:765–775. doi:10.1002/stem.1325

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Linda Harrison for her expert technical assistance with neonatal cardiomyocyte isolations. In addition, we would like to thank Ms. Jessica Lan-shin Liu, Ms. Yun Shi Long, and Dr. Lakshmanan Annamalai, for their technical assistance with histology.

Author contributions

SD performed experiments, analyzed data, generated figures, wrote draft, revised manuscript, and provided funding. REB performed experiments, analyzed data, generated figures, and wrote draft. LJW performed experiments and analyzed data. BWL performed experiments and analyzed data. KRB performed experiments and analyzed data. AMM performed experiments, generated figures, and analyzed data. AMA performed experiments and analyzed data. AMG performed experiments and analyzed data. TNA performed experiments and analyzed data. PJK performed experiments and revised manuscript. SM performed experiments and analyzed data. TH performed experiments and analyzed data. SDP designed experiments, revised manuscript, and provided funding. SPJ designed experiments, wrote draft, revised manuscript, and provided funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven P. Jones.

Ethics declarations

Funding

Dr. Jones has been supported by Grants from the NIH (R01 HL083320, R01 HL094419, P20 RR103492, and P01 HL078825). Mr. Dassanayaka has been supported by an American Heart Association Predoctoral Fellowship—Great Rivers Affiliate (14PRE19710015).

Conflict of interest

None.

Additional information

S. Dassanayaka and R. E. Brainard contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1. Ogt deletion suppresses Oga expression. Cardiac OGA mRNA transcript and protein levels were depressed (p < 0.05) at 2 weeks in i-cmOgt −/− (A and B), but not at 4 weeks (C and D). *p <0.05 vs. WT TAC.

Supplemental Fig. 2. Ogt ablation does not alter markers of EMT progression. Markers of EMT were assessed using RT-PCR at both 2 weeks (A) and 4 weeks (B) following TAC. There were no differences in gene expression of EMT mediators; Zeb1, Zeb2, Snai1, Snai2, or Twi between i-cmOgt −/− TAC and WT TAC at any time point. In addition, there were no differences in Fn1, Vim, and Pstn expression when comparing i-cmOgt −/− TAC hearts with WT TAC hearts.

Supplemental Fig. 3. Cardiac Ogt ablation does not alter apoptosis or angiogenesis in response to pressure overload. Gene expression of GATA-4 target genes, Bcl2 and Vegfa, was measured at 2 (A) and 4 (B)-week post-TAC. LV apoptosis (via TUNEL) was measured at 4-week post-TAC (C). LV capillary density (via isolectin B4) was measured 4-week post-TAC (D). *p <0.05 vs. WT TAC.

Supplementary material 1 (PDF 168 kb)

Supplementary material 2 (DOCX 62 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dassanayaka, S., Brainard, R.E., Watson, L.J. et al. Cardiomyocyte Ogt limits ventricular dysfunction in mice following pressure overload without affecting hypertrophy. Basic Res Cardiol 112, 23 (2017). https://doi.org/10.1007/s00395-017-0612-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-017-0612-7

Keywords

Navigation