Skip to main content
Log in

Inhibition of mitochondrial fission as a molecular target for cardioprotection: critical importance of the timing of treatment

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Recent attention has focused on the concept that mitochondrial dynamics—that is, the balance between mitochondrial fusion and fission (fragmentation)—may play a pivotal role in determining cell fate in the setting of myocardial ischemia–reperfusion injury. In this regard, there is an emerging consensus that: (1) ischemia–reperfusion favors mitochondrial fragmentation and (2) strategies aimed at inhibiting the translocation of dynamin-related protein 1 (DRP1: the ‘master regulator’ of fission) from the cytosol to the mitochondria, when initiated as a pretreatment, are cardioprotective. However, direct molecular evidence of a cause-and-effect relationship between mitochondrial fission and cardiomyocyte death has not been established. To address this issue, we used a well-characterized in vitro, immortal cultured cardiomyocyte model to establish whether subcellular redistribution of DRP1 to mitochondria: (1) is triggered by hypoxia–reoxygenation; (2) plays a causal role in hypoxia–reoxygenation-induced cytochrome c release (harbinger of apoptosis) and cardiomyocyte death; and (3) represents a molecular mechanism that can be targeted in a clinically relevant time frame to render cells resistant to lethal hypoxia–reoxygenation injury. Our results provide direct evidence that the redistribution of DRP1 to mitochondria contributes to cardiomyocyte death, and corroborate the previous observations that the pre-ischemic inhibition of DRP1 translocation is cardioprotective. Moreover, we report the novel finding that—in marked contrast to the data obtained with pretreatment—inhibition of DRP1 translocation initiated at the time of reoxygenation had complex, unexpected and unfavorable consequences: i.e., attenuated cardiomyocyte apoptosis but exacerbated total cell death, possibly via concurrent upregulation of necroptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

REFERENCES

  1. Archer SL (2013) Mitochondrial dynamics—mitochondrial fission and fusion in human diseases. N Engl J Med 369:2236–2251. doi:10.1056/NEJMra1215233

    Article  CAS  PubMed  Google Scholar 

  2. Aurora AB, Mahmoud AI, Luo X, Johnson BA, van Rooij E, Matsuzaki S, Humphries KM, Hill JA, Bassel-Duby R, Sadek HA, Olson EN (2012) MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca(2)(+) overload and cell death. J Clin Invest 122:1222–1232. doi:10.1172/JCI59327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662. doi:10.1038/nature03434

    Article  CAS  PubMed  Google Scholar 

  4. Calo L, Dong Y, Kumar R, Przyklenk K, Sanderson TH (2013) Mitochondrial dynamics: an emerging paradigm in ischemia–reperfusion injury. Curr Pharm Des 19:6848–6857

    Article  CAS  PubMed  Google Scholar 

  5. Cassidy-Stone A, Chipuk JE, Ingerman E, Song C, Yoo C, Kuwana T, Kurth MJ, Shaw JT, Hinshaw JE, Green DR, Nunnari J (2008) Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell 14:193–204. doi:10.1016/j.devcel.2007.11.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chang CR, Blackstone C (2007) Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J Biol Chem 282:21583–21587. doi:10.1074/jbc.C700083200

    Article  CAS  PubMed  Google Scholar 

  7. Christofferson DE, Li Y, Yuan J (2014) Control of life-or-death decisions by RIP1 kinase. Annu Rev Physiol 76:129–150. doi:10.1146/annurev-physiol-021113-170259

    Article  CAS  PubMed  Google Scholar 

  8. Claycomb WC, Lanson NA Jr, Stallworth BS, Egeland DB, Delcarpio JB, Bahinski A, Izzo NJ Jr (1998) HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci USA 95:2979–2984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cribbs JT, Strack S (2007) Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep 8:939–944. doi:10.1038/sj.embor.7401062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cung TT, Morel O, Cayla G, Rioufol G, Garcia-Dorado D, Angoulvant D, Bonnefoy-Cudraz E, Guerin P, Elbaz M, Delarche N, Coste P, Vanzetto G, Metge M, Aupetit JF, Jouve B, Motreff P, Tron C, Labeque JN, Steg PG, Cottin Y, Range G, Clerc J, Claeys MJ, Coussement P, Prunier F, Moulin F, Roth O, Belle L, Dubois P, Barragan P, Gilard M, Piot C, Colin P, De Poli F, Morice MC, Ider O, Dubois-Rande JL, Unterseeh T, Le Breton H, Beard T, Blanchard D, Grollier G, Malquarti V, Staat P, Sudre A, Elmer E, Hansson MJ, Bergerot C, Boussaha I, Jossan C, Derumeaux G, Mewton N, Ovize M (2015) Cyclosporine before PCI in patients with acute myocardial infarction. N Engl J Med 373:1021–1031. doi:10.1056/NEJMoa1505489

    Article  CAS  PubMed  Google Scholar 

  11. Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM, Gerber SA, Lugovskoy A, Yuan J (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4:313–321. doi:10.1038/nchembio.83

    Article  CAS  PubMed  Google Scholar 

  12. Detmer SA, Chan DC (2007) Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 8:870–879. doi:10.1038/nrm2275

    Article  CAS  PubMed  Google Scholar 

  13. Dhingra R, Kirshenbaum LA (2014) Regulation of mitochondrial dynamics and cell fate. Circ J 78:803–810

    Article  CAS  PubMed  Google Scholar 

  14. Disatnik MH, Ferreira JC, Campos JC, Gomes KS, Dourado PM, Qi X, Mochly-Rosen D (2013) Acute inhibition of excessive mitochondrial fission after myocardial infarction prevents long-term cardiac dysfunction. J Am Heart Assoc 2:e000461. doi:10.1161/JAHA.113.000461

    Article  PubMed  PubMed Central  Google Scholar 

  15. Frezza C, Cipolat S, Scorrano L (2007) Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat Protoc 2:287–295. doi:10.1038/nprot.2006.478

    Article  CAS  PubMed  Google Scholar 

  16. Gassmann M, Grenacher B, Rohde B, Vogel J (2009) Quantifying western blots: pitfalls of densitometry. Electrophoresis 30:1845–1855. doi:10.1002/elps.200800720

    Article  CAS  PubMed  Google Scholar 

  17. Germain M, Mathai JP, McBride HM, Shore GC (2005) Endoplasmic reticulum BIK initiates DRP1-regulated remodelling of mitochondrial cristae during apoptosis. EMBO J 24:1546–1556. doi:10.1038/sj.emboj.7600592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guo C, Hildick KL, Luo J, Dearden L, Wilkinson KA, Henley JM (2013) SENP3-mediated deSUMOylation of dynamin-related protein 1 promotes cell death following ischaemia. EMBO J 32:1514–1528. doi:10.1038/emboj.2013.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hamacher-Brady A, Brady NR, Gottlieb RA (2006) Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J Biol Chem 281:29776–29787. doi:10.1074/jbc.M603783200

    Article  CAS  PubMed  Google Scholar 

  20. Jahani-Asl A, Slack RS (2007) The phosphorylation state of Drp1 determines cell fate. EMBO Rep 8:912–913. doi:10.1038/sj.embor.7401077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim H, Scimia MC, Wilkinson D, Trelles RD, Wood MR, Bowtell D, Dillin A, Mercola M, Ronai ZA (2011) Fine-tuning of Drp1/Fis1 availability by AKAP121/Siah2 regulates mitochondrial adaptation to hypoxia. Mol Cell 44:532–544. doi:10.1016/j.molcel.2011.08.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E (2008) Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 9:505–518. doi:10.1038/nrn2417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kong D, Xu L, Yu Y, Zhu W, Andrews DW, Yoon Y, Kuo TH (2005) Regulation of Ca2+-induced permeability transition by Bcl-2 is antagonized by Drpl and hFis1. Mol Cell Biochem 272:187–199

    Article  CAS  PubMed  Google Scholar 

  24. Kumar R, Bukowski MJ, Wider JM, Reynolds CA, Calo L, Lepore B, Tousignant R, Jones M, Przyklenk K, Sanderson TH (2016) Mitochondrial dynamics following global cerebral ischemia. Mol Cell Neurosci 76 (in press)

  25. Liesa M, Palacin M, Zorzano A (2009) Mitochondrial dynamics in mammalian health and disease. Physiol Rev 89:799–845. doi:10.1152/physrev.00030.2008

    Article  CAS  PubMed  Google Scholar 

  26. Lim SY, Davidson SM, Mocanu MM, Yellon DM, Smith CC (2007) The cardioprotective effect of necrostatin requires the cyclophilin-D component of the mitochondrial permeability transition pore. Cardiovasc Drugs Ther 21:467–469. doi:10.1007/s10557-007-6067-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Martinou JC, Youle RJ (2006) Which came first, the cytochrome c release or the mitochondrial fission? Cell Death Differ 13:1291–1295. doi:10.1038/sj.cdd.4401985

    Article  CAS  PubMed  Google Scholar 

  28. Neuspiel M, Zunino R, Gangaraju S, Rippstein P, McBride H (2005) Activated mitofusin 2 signals mitochondrial fusion, interferes with Bax activation, and reduces susceptibility to radical induced depolarization. J Biol Chem 280:25060–25070. doi:10.1074/jbc.M501599200

    Article  CAS  PubMed  Google Scholar 

  29. Ofengeim D, Yuan J (2013) Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death. Nat Rev Mol Cell Biol 14:727–736. doi:10.1038/nrm3683

    Article  CAS  PubMed  Google Scholar 

  30. Olichon A, Elachouri G, Baricault L, Delettre C, Belenguer P, Lenaers G (2007) OPA1 alternate splicing uncouples an evolutionary conserved function in mitochondrial fusion from a vertebrate restricted function in apoptosis. Cell Death Differ 14:682–692. doi:10.1038/sj.cdd.4402048

    Article  CAS  PubMed  Google Scholar 

  31. Ong SB, Kalkhoran SB, Cabrera-Fuentes HA, Hausenloy DJ (2015) Mitochondrial fusion and fission proteins as novel therapeutic targets for treating cardiovascular disease. Eur J Pharmacol 763:104–114. doi:10.1016/j.ejphar.2015.04.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ong SB, Samangouei P, Kalkhoran SB, Hausenloy DJ (2015) The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury. J Mol Cell Cardiol 78:23–34. doi:10.1016/j.yjmcc.2014.11.005

    Article  CAS  PubMed  Google Scholar 

  33. Ong SB, Subrayan S, Lim SY, Yellon DM, Davidson SM, Hausenloy DJ (2010) Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation 121:2012–2022. doi:10.1161/CIRCULATIONAHA.109.906610

    Article  CAS  PubMed  Google Scholar 

  34. Ong SG, Lee WH, Theodorou L, Kodo K, Lim SY, Shukla DH, Briston T, Kiriakidis S, Ashcroft M, Davidson SM, Maxwell PH, Yellon DM, Hausenloy DJ (2014) HIF-1 reduces ischaemia-reperfusion injury in the heart by targeting the mitochondrial permeability transition pore. Cardiovasc Res 104:24–36. doi:10.1093/cvr/cvu172

    Article  PubMed  Google Scholar 

  35. Rugarli EI, Langer T (2012) Mitochondrial quality control: a matter of life and death for neurons. EMBO J 31:1336–1349. doi:10.1038/emboj.2012.38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sharp WW, Fang YH, Han M, Zhang HJ, Hong Z, Banathy A, Morrow E, Ryan JJ, Archer SL (2014) Dynamin-related protein 1 (Drp1)-mediated diastolic dysfunction in myocardial ischemia–reperfusion injury: therapeutic benefits of Drp1 inhibition to reduce mitochondrial fission. FASEB J 28:316–326. doi:10.1096/fj.12-226225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Smith CC, Davidson SM, Lim SY, Simpkin JC, Hothersall JS, Yellon DM (2007) Necrostatin: a potentially novel cardioprotective agent? Cardiovasc Drugs Ther 21:227–233. doi:10.1007/s10557-007-6035-1

    Article  CAS  PubMed  Google Scholar 

  38. Sobrado M, Ramirez BG, Neria F, Lizasoain I, Arbones ML, Minami T, Redondo JM, Moro MA, Cano E (2012) Regulator of calcineurin 1 (Rcan1) has a protective role in brain ischemia/reperfusion injury. J Neuroinflamm 9:48. doi:10.1186/1742-2094-9-48

    Article  CAS  Google Scholar 

  39. Strober W (2001) Trypan blue exclusion test of cell viability. Curr Protoc Immunol. doi:10.1002/0471142735.ima03bs21

    Google Scholar 

  40. Suliman HB, Piantadosi CA (2016) Mitochondrial quality control as a therapeutic target. Pharmacol Rev 68:20–48. doi:10.1124/pr.115.011502

    Article  CAS  PubMed  Google Scholar 

  41. Tanaka A, Youle RJ (2008) A chemical inhibitor of DRP1 uncouples mitochondrial fission and apoptosis. Mol Cell 29:409–410. doi:10.1016/j.molcel.2008.02.005

    Article  CAS  PubMed  Google Scholar 

  42. Wang JX, Jiao JQ, Li Q, Long B, Wang K, Liu JP, Li YR, Li PF (2011) miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat Med 17:71–78. doi:10.1038/nm.2282

    Article  PubMed  Google Scholar 

  43. Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11:872–884. doi:10.1038/nrm3013

    Article  CAS  PubMed  Google Scholar 

  44. White SM, Constantin PE, Claycomb WC (2004) Cardiac physiology at the cellular level: use of cultured HL-1 cardiomyocytes for studies of cardiac muscle cell structure and function. Am J Physiol Heart Circ Physiol 286:H823–H829. doi:10.1152/ajpheart.00986.2003

    Article  CAS  PubMed  Google Scholar 

  45. Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337:1062–1065. doi:10.1126/science.1219855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zaja I, Bai X, Liu Y, Kikuchi C, Dosenovic S, Yan Y, Canfield SG, Bosnjak ZJ (2014) Cdk1, PKCd and calcineurin-mediated Drp1 pathway contributes to mitochondrial fission-induced cardiomyocyte death. Biochem Biophys Res Commun 453:710–721. doi:10.1016/j.bbrc.2014.09.144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ, Han J (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325:332–336. doi:10.1126/science.1172308

    Article  CAS  PubMed  Google Scholar 

  48. Zhang X, Yan H, Yuan Y, Gao J, Shen Z, Cheng Y, Shen Y, Wang RR, Wang X, Hu WW, Wang G, Chen Z (2013) Cerebral ischemia–reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. Autophagy 9:1321–1333. doi:10.4161/auto.25132

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Przyklenk.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

The manuscript does not contain animal studies, clinical studies or patient data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Undyala, V.V.R. & Przyklenk, K. Inhibition of mitochondrial fission as a molecular target for cardioprotection: critical importance of the timing of treatment. Basic Res Cardiol 111, 59 (2016). https://doi.org/10.1007/s00395-016-0578-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-016-0578-x

Keywords

Navigation