Skip to main content

Advertisement

Log in

β3 adrenergic receptor selective stimulation during ischemia/reperfusion improves cardiac function in translational models through inhibition of mPTP opening in cardiomyocytes

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Selective stimulation of β3 adrenergic-receptor (β3AR) has been shown to reduce infarct size in a mouse model of myocardial ischemia/reperfusion. However, its functional long-term effect and the cardioprotective mechanisms at the level of cardiomyocytes have not been elucidated, and the impact of β3AR stimulation has not been evaluated in a more translational large animal model. This study aimed at evaluating pre-perfusion administration of BRL37344 both in small and large animal models of myocardial ischemia/reperfusion. Pre-reperfusion administration of the β3AR agonist BRL37344 (5 μg/kg) reduced infarct size at 2-and 24-h reperfusion in wild-type mice. Long-term (12-weeks) left ventricular (LV) function assessed by echocardiography and cardiac magnetic resonance (CMR) was significantly improved in β3AR agonist-treated mice. Incubation with β3AR agonist (BRL37344, 7 μmol/L) significantly reduced cell death in isolated adult mouse cardiomyocytes during hypoxia/reoxygenation and decreased susceptibility to deleterious opening of the mitochondrial permeability transition pore (mPTP), via a mechanism dependent on the Akt-NO signaling pathway. Pre-reperfusion BRL37344 administration had no effect on infarct size in cyclophilin-D KO mice, further implicating mPTP in the mechanism of protection. Large-white pigs underwent percutaneous coronary ischemia/reperfusion and 3-T CMR at 7 and 45 days post-infarction. Pre-perfusion administration of BRL37344 (5 μg/kg) decreased infarct size and improved long-term LV contractile function. A single-dose administration of β3AR agonist before reperfusion decreased infarct size and resulted in a consistent and long-term improvement in cardiac function, both in small and large animal models of myocardial ischemia/reperfusion. This protection appears to be executed through inhibition of mPTP opening in cardiomyocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aletras AH, Tilak GS, Natanzon A, Hsu LY, Gonzalez FM, Hoyt RF Jr, Arai AE (2006) Retrospective determination of the area at risk for reperfused acute myocardial infarction with t2-weighted cardiac magnetic resonance imaging: histopathological and displacement encoding with stimulated echoes (dense) functional validations. Circulation 113:1865–1870. doi:10.1161/CIRCULATIONAHA.105.576025

    Article  PubMed  Google Scholar 

  2. Alzaga AG, Cerdan M, Varon J (2006) Therapeutic hypothermia. Resuscitation 70:369–380. doi:10.1016/j.resuscitation.2006.01.017

    Article  PubMed  Google Scholar 

  3. Aragon JP, Condit ME, Bhushan S, Predmore BL, Patel SS, Grinsfelder DB, Gundewar S, Jha S, Calvert JW, Barouch LA, Lavu M, Wright HM, Lefer DJ (2011) Beta3-adrenoreceptor stimulation ameliorates myocardial ischemia–reperfusion injury via endothelial nitric oxide synthase and neuronal nitric oxide synthase activation. J Am Coll Cardiol 58:2683–2691. doi:10.1016/j.jacc.2011.09.033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD (2005) Loss of cyclophilin d reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662. doi:10.1038/nature03434

    Article  CAS  PubMed  Google Scholar 

  5. Bell R, Beeuwkes R, Botker HE, Davidson S, Downey J, Garcia-Dorado D, Hausenloy DJ, Heusch G, Ibanez B, Kitakaze M, Lecour S, Mentzer R, Miura T, Opie L, Ovize M, Ruiz-Meana M, Schulz R, Shannon R, Walker M, Vinten-Johansen J, Yellon D (2012) Trials, tribulations and speculation! Report from the 7th biennial hatter cardiovascular institute workshop. Basic Res Cardiol 107:300. doi:10.1007/s00395-012-0300-6

    Article  PubMed  Google Scholar 

  6. Bell RM, Kunuthur SP, Hendry C, Bruce-Hickman D, Davidson S, Yellon DM (2013) Matrix metalloproteinase inhibition protects cypd knockout mice independently of risk/mptp signalling: a parallel pathway to protection. Basic Res Cardiol 108:331. doi:10.1007/s00395-013-0331-7

    Article  PubMed  Google Scholar 

  7. Bhushan S, Kondo K, Predmore BL, Zlatopolsky M, King AL, Pearce C, Huang H, Tao YX, Condit ME, Lefer DJ (2012) Selective beta2-adrenoreceptor stimulation attenuates myocardial cell death and preserves cardiac function after ischemia–reperfusion injury. Arterioscler Thromb Vasc Biol 32:1865–1874. doi:10.1161/ATVBAHA.112.251769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Boengler K, Hilfiker-Kleiner D, Heusch G, Schulz R (2010) Inhibition of permeability transition pore opening by mitochondrial stat3 and its role in myocardial ischemia/reperfusion. Basic Res Cardiol 105:771–785. doi:10.1007/s00395-010-0124-1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Bohl S, Medway DJ, Schulz-Menger J, Schneider JE, Neubauer S, Lygate CA (2009) Refined approach for quantification of in vivo ischemia–reperfusion injury in the mouse heart. Am J Physiol Heart Circ Physiol 297:H2054–2058. doi:10.1152/ajpheart.00836.2009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Bolli R, Becker L, Gross G, Mentzer R Jr, Balshaw D, Lathrop DA (2004) Myocardial protection at a crossroads: the need for translation into clinical therapy. Circ Res 95:125–134. doi:10.1161/01.RES.0000137171.97172.d7

    Article  CAS  PubMed  Google Scholar 

  11. Botker HE, Kaltoft AK, Pedersen SF, Kim WY (2012) Measuring myocardial salvage. Cardiovasc Res 94:266–275. doi:10.1093/cvr/cvs081

    Article  CAS  PubMed  Google Scholar 

  12. Bundgaard H, Liu CC, Garcia A, Hamilton EJ, Huang Y, Chia KK, Hunyor SN, Figtree GA, Rasmussen HH (2010) Beta(3) adrenergic stimulation of the cardiac na+–k+ pump by reversal of an inhibitory oxidative modification. Circulation 122:2699–2708. doi:10.1161/CIRCULATIONAHA.110.964619

    Article  CAS  PubMed  Google Scholar 

  13. Burns RJ, Gibbons RJ, Yi Q, Roberts RS, Miller TD, Schaer GL, Anderson JL, Yusuf S (2002) The relationships of left ventricular ejection fraction, end-systolic volume index and infarct size to six-month mortality after hospital discharge following myocardial infarction treated by thrombolysis. J Am Coll Cardiol 39:30–36. doi:10.1016/S0735-1097(01)01711-9

    Article  PubMed  Google Scholar 

  14. Calvert JW, Condit ME, Aragon JP, Nicholson CK, Moody BF, Hood RL, Sindler AL, Gundewar S, Seals DR, Barouch LA, Lefer DJ (2011) Exercise protects against myocardial ischemia–reperfusion injury via stimulation of beta(3)-adrenergic receptors and increased nitric oxide signaling: Role of nitrite and nitrosothiols. Circ Res 108:1448–1458. doi:10.1161/CIRCRESAHA.111.241117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341(Pt 2):233–249. doi:10.1042/0264-6021:3410233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Cruz-Adalia A, Jimenez-Borreguero LJ, Ramirez-Huesca M, Chico-Calero I, Barreiro O, Lopez-Conesa E, Fresno M, Sanchez-Madrid F, Martin P (2010) Cd69 limits the severity of cardiomyopathy after autoimmune myocarditis. Circulation 122:1396–1404. doi:10.1161/CIRCULATIONAHA.110.952820

    Article  CAS  PubMed  Google Scholar 

  17. Davidson SM, Hausenloy D, Duchen MR, Yellon DM (2006) Signalling via the reperfusion injury signalling kinase (risk) pathway links closure of the mitochondrial permeability transition pore to cardioprotection. Int J Biochem Cell Biol 38:414–419. doi:10.1016/j.biocel.2005.09.017

    Article  CAS  PubMed  Google Scholar 

  18. Davidson SM, Yellon DM, Murphy MP, Duchen MR (2012) Slow calcium waves and redox changes precede mitochondrial permeability transition pore opening in the intact heart during hypoxia and reoxygenation. Cardiovasc Res 93:445–453. doi:10.1093/cvr/cvr349

    Article  CAS  PubMed  Google Scholar 

  19. Duchen MR, McGuinness O, Brown LA, Crompton M (1993) On the involvement of a cyclosporin a sensitive mitochondrial pore in myocardial reperfusion injury. Cardiovasc Res 27:1790–1794. doi:10.1093/cvr/27.10.1790

    Article  CAS  PubMed  Google Scholar 

  20. Eltzschig HK, Eckle T (2011) Ischemia and reperfusion—from mechanism to translation. Nat Med 17:1391–1401. doi:10.1038/nm.2507

    Article  CAS  PubMed  Google Scholar 

  21. Frohlich GM, Meier P, White SK, Yellon DM, Hausenloy DJ (2013) Myocardial reperfusion injury: looking beyond primary pci. Eur Heart J 34:1714–1722. doi:10.1093/eurheartj/eht090

    Article  PubMed  Google Scholar 

  22. Gauthier C, Tavernier G, Charpentier F, Langin D, Le Marec H (1996) Functional beta3-adrenoceptor in the human heart. J Clin Invest 98:556–562. doi:10.1172/JCI118823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Gerczuk PZ, Kloner RA (2012) An update on cardioprotection: a review of the latest adjunctive therapies to limit myocardial infarction size in clinical trials. J Am Coll Cardiol 59:969–978. doi:10.1016/j.jacc.2011.07.054

    Article  PubMed  Google Scholar 

  24. Gomez L, Chavanis N, Argaud L, Chalabreysse L, Gateau-Roesch O, Ninet J, Ovize M (2005) Fas-independent mitochondrial damage triggers cardiomyocyte death after ischemia–reperfusion. Am J Physiol Heart Circ Physiol 289:H2153–2158. doi:10.1152/ajpheart.00165.2005

    Article  CAS  PubMed  Google Scholar 

  25. Guo Y, Flaherty MP, Wu WJ, Tan W, Zhu X, Li Q, Bolli R (2012) Genetic background, gender, age, body temperature, and arterial blood ph have a major impact on myocardial infarct size in the mouse and need to be carefully measured and/or taken into account: results of a comprehensive analysis of determinants of infarct size in 1,074 mice. Basic Res Cardiol 107:288. doi:10.1007/s00395-012-0288-y

    Article  PubMed Central  PubMed  Google Scholar 

  26. Hausenloy DJ, Baxter G, Bell R, Botker HE, Davidson SM, Downey J, Heusch G, Kitakaze M, Lecour S, Mentzer R, Mocanu MM, Ovize M, Schulz R, Shannon R, Walker M, Walkinshaw G, Yellon DM (2010) Translating novel strategies for cardioprotection: the hatter workshop recommendations. Basic Res Cardiol 105:677–686. doi:10.1007/s00395-010-0121-4

    Article  PubMed Central  PubMed  Google Scholar 

  27. Hausenloy DJ, Yellon DM (2006) Survival kinases in ischemic preconditioning and postconditioning. Cardiovasc Res 70:240–253. doi:10.1016/j.cardiores.2006.01.017

    Article  CAS  PubMed  Google Scholar 

  28. Heusch G (2011) Beta3-adrenoceptor activation just says no to myocardial reperfusion injury. J Am Coll Cardiol 58:2692–2694. doi:10.1016/j.jacc.2011.09.034

    Article  CAS  PubMed  Google Scholar 

  29. Heusch G (2013) Cardioprotection: chances and challenges of its translation to the clinic. Lancet 381:166–175. doi:10.1016/S0140-6736(12)60916-7

    Article  PubMed  Google Scholar 

  30. Heusch G, Boengler K, Schulz R (2008) Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 118:1915–1919. doi:10.1161/CIRCULATIONAHA.108.805242

    Article  PubMed  Google Scholar 

  31. Heusch G, Boengler K, Schulz R (2010) Inhibition of mitochondrial permeability transition pore opening: the holy grail of cardioprotection. Basic Res Cardiol 105:151–154. doi:10.1007/s00395-009-0080-9

    Article  PubMed  Google Scholar 

  32. Heusch G, Skyschally A, Schulz R (2011) The in situ pig heart with regional ischemia/reperfusion—ready for translation. J Mol Cell Cardiol 50:951–963. doi:10.1016/j.yjmcc.2011.02.016

    Article  CAS  PubMed  Google Scholar 

  33. Ibanez B, Cimmino G, Prat-Gonzalez S, Vilahur G, Hutter R, Garcia MJ, Fuster V, Sanz J, Badimon L, Badimon JJ (2011) The cardioprotection granted by metoprolol is restricted to its administration prior to coronary reperfusion. Int J Cardiol 147:428–432. doi:10.1016/j.ijcard.2009.09.551

    Article  PubMed Central  PubMed  Google Scholar 

  34. Ibanez B, Fuster V, Macaya C, Sanchez-Brunete V, Pizarro G, Lopez-Romero P, Mateos A, Jimenez-Borreguero J, Fernandez-Ortiz A, Sanz G, Fernandez-Friera L, Corral E, Barreiro MV, Ruiz-Mateos B, Goicolea J, Hernandez-Antolin R, Acebal C, Garcia-Rubira JC, Albarran A, Zamorano JL, Casado I, Valenciano J, Fernandez-Vazquez F, de la Torre JM, Perez de Prado A, Iglesias-Vazquez JA, Martinez-Tenorio P, Iniguez A (2012) Study design for the “effect of metoprolol in cardioprotection during an acute myocardial infarction” (metocard-cnic): A randomized, controlled parallel-group, observer-blinded clinical trial of early pre-reperfusion metoprolol administration in st-segment elevation myocardial infarction. Am Heart J 164(473–480):e475. doi:10.1016/j.ahj.2012.07.020

    Google Scholar 

  35. Ibanez B, Prat-Gonzalez S, Speidl WS, Vilahur G, Pinero A, Cimmino G, Garcia MJ, Fuster V, Sanz J, Badimon JJ (2007) Early metoprolol administration before coronary reperfusion results in increased myocardial salvage: Analysis of ischemic myocardium at risk using cardiac magnetic resonance. Circulation 115:2909–2916. doi:10.1161/CIRCULATIONAHA.106.679639

    Article  CAS  PubMed  Google Scholar 

  36. Ibarra C, Vicencio JM, Estrada M, Lin Y, Rocco P, Rebellato P, Munoz JP, Garcia-Prieto J, Quest AF, Chiong M, Davidson SM, Bulatovic I, Grinnemo KH, Larsson O, Szabadkai G, Uhlen P, Jaimovich E, Lavandero S (2013) Local control of nuclear calcium signaling in cardiac myocytes by perinuclear microdomains of sarcolemmal insulin-like growth factor 1 receptors. Circ Res 112:236–245. doi:10.1161/CIRCRESAHA.112.273839

    Article  CAS  PubMed  Google Scholar 

  37. Kelley KW, Curtis SE, Marzan GT, Karara HM, Anderson CR (1973) Body surface area of female swine. J Anim Sci 36:927–930

    CAS  PubMed  Google Scholar 

  38. Maroko PR, Kjekshus JK, Sobel BE, Watanabe T, Covell JW, Ross J Jr, Braunwald E (1971) Factors influencing infarct size following experimental coronary artery occlusions. Circulation 43:67–82. doi:10.1161/01.CIR.43.1.67

    Article  CAS  PubMed  Google Scholar 

  39. Niu X, Watts VL, Cingolani OH, Sivakumaran V, Leyton-Mange JS, Ellis CL, Miller KL, Vandegaer K, Bedja D, Gabrielson KL, Paolocci N, Kass DA, Barouch LA (2012) Cardioprotective effect of beta-3 adrenergic receptor agonism: role of neuronal nitric oxide synthase. J Am Coll Cardiol 59:1979–1987. doi:10.1016/j.jacc.2011.12.046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Nowosielski M, Schocke M, Mayr A, Pedarnig K, Klug G, Kohler A, Bartel T, Muller S, Trieb T, Pachinger O, Metzler B (2009) Comparison of wall thickening and ejection fraction by cardiovascular magnetic resonance and echocardiography in acute myocardial infarction. J Cardiovasc Magn Reson 11:22. doi:10.1186/1532-429X-11-22

    Article  PubMed Central  PubMed  Google Scholar 

  41. Piot C, Croisille P, Staat P, Thibault H, Rioufol G, Mewton N, Elbelghiti R, Cung TT, Bonnefoy E, Angoulvant D, Macia C, Raczka F, Sportouch C, Gahide G, Finet G, Andre-Fouet X, Revel D, Kirkorian G, Monassier JP, Derumeaux G, Ovize M (2008) Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med 359:473–481. doi:10.1056/NEJMoa071142

    Article  CAS  PubMed  Google Scholar 

  42. Piper HM, Garcia-Dorado D, Ovize M (1998) A fresh look at reperfusion injury. Cardiovasc Res 38:291–300. doi:10.1016/S0008-6363(98)00033-9

    Article  CAS  PubMed  Google Scholar 

  43. Rengo G, Zincarelli C, Femminella GD, Liccardo D, Pagano G, de Lucia C, Altobelli GG, Cimini V, Ruggiero D, Perrone-Filardi P, Gao E, Ferrara N, Lymperopoulos A, Koch WJ, Leosco D (2012) Myocardial beta(2)-adrenoceptor gene delivery promotes coordinated cardiac adaptive remodelling and angiogenesis in heart failure. Br J Pharmacol 166:2348–2361. doi:10.1111/j.1476-5381.2012.01954.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Sambrano GR, Fraser I, Han H, Ni Y, O’Connell T, Yan Z, Stull JT (2002) Navigating the signalling network in mouse cardiac myocytes. Nature 420:712–714. doi:10.1038/nature01306

    Article  CAS  PubMed  Google Scholar 

  45. Schuster A, Kutty S, Padiyath A, Parish V, Gribben P, Danford DA, Makowski MR, Bigalke B, Beerbaum P, Nagel E (2011) Cardiovascular magnetic resonance myocardial feature tracking detects quantitative wall motion during dobutamine stress. J Cardiovasc Magn Reson 13:58. doi:10.1186/1532-429X-13-58

    Article  PubMed Central  PubMed  Google Scholar 

  46. Schwartz Longacre L, Kloner RA, Arai AE, Baines CP, Bolli R, Braunwald E, Downey J, Gibbons RJ, Gottlieb RA, Heusch G, Jennings RB, Lefer DJ, Mentzer RM, Murphy E, Ovize M, Ping P, Przyklenk K, Sack MN, Vander Heide RS, Vinten-Johansen J, Yellon DM (2011) New horizons in cardioprotection: recommendations from the 2010 national heart, lung, and blood institute workshop. Circulation 124:1172–1179. doi:10.1161/CIRCULATIONAHA.111.032698

    Article  PubMed  Google Scholar 

  47. Sharma V, Bell RM, Yellon DM (2012) Targeting reperfusion injury in acute myocardial infarction: a review of reperfusion injury pharmacotherapy. Expert Opin Pharmacother 13:1153–1175. doi:10.1517/14656566.2012.685163

    Article  CAS  PubMed  Google Scholar 

  48. Skyschally A, Schulz R, Heusch G (2010) Cyclosporine a at reperfusion reduces infarct size in pigs. Cardiovasc Drugs Ther 24:85–87. doi:10.1007/s10557-010-6219-y

    Article  PubMed Central  PubMed  Google Scholar 

  49. Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357:1121–1135. doi:10.1056/NEJMra071667

    Article  CAS  PubMed  Google Scholar 

  50. Zhou YY, Wang SQ, Zhu WZ, Chruscinski A, Kobilka BK, Ziman B, Wang S, Lakatta EG, Cheng H, Xiao RP (2000) Culture and adenoviral infection of adult mouse cardiac myocytes: methods for cellular genetic physiology. Am J Physiol Heart Circ Physiol 279:H429–H436

    CAS  PubMed  Google Scholar 

  51. Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ (2000) Reactive oxygen species (ros)-induced ros release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 192:1001–1014. doi:10.1084/jem.192.7.1001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. S. Mendez-Ferrer (CNIC) for supplying the β3AR knockout mice. We thank Rachel Dongworth, Rupa Parvin Khaton, and Virginia Zorita for the help and technical support. We also thank Ana V. Alonso for her outstanding technical support in mouse echocardiography and Gonzalo J. López and Angel Macías for theirs in swine CMR evaluations. We are grateful to the animal facilities at the CNIC and the UCL and to CNIC’s farm for their superb support with the animal care. Antonio M. Santos-Beneit provided advice in microscopy and image analysis. Simon Bartlett provided English editing.

CMR images were analyzed using dedicated software (QMass MR v.7) with support through a scientific collaboration with Medis medical imaging systems BV. Regional CMR analysis was conducted with TomTec 2D CPA MR Quantification Software with full support through scientific collaboration with Tomtec.

This work was supported by an award from the Fondo de Investigación Sanitaria to BI a (FIS 10/02268) and by the competitive grant “CNIC translational 01/2009”, also to BI.

D.S-R is supported by a CNIC-Postdoctoral Fellowship; JM.G-R and A.G-A were supported by CNIC-Cardiojoven Fellowships. The “Red de Investigación Cardiovascular (RIC)” of the Spanish Ministry of Health supports B.I (RD 12/0042/0054) and A.G-A. The “Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)” is supported by the Spanish Ministry of Economy and Competitiveness, and the Pro-CNIC Foundation.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Borja Ibanez.

Additional information

J. García-Prieto, J. M. García-Ruiz, and D. Sanz-Rosa contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Supplementary material 2 (PDF 368 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Prieto, J., García-Ruiz, J.M., Sanz-Rosa, D. et al. β3 adrenergic receptor selective stimulation during ischemia/reperfusion improves cardiac function in translational models through inhibition of mPTP opening in cardiomyocytes. Basic Res Cardiol 109, 422 (2014). https://doi.org/10.1007/s00395-014-0422-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-014-0422-0

Keywords

Navigation