Skip to main content
Log in

Myocardial injury modulates the innate immune system and changes myocardial sensitivity

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Objective

Transverse aortic constriction (TAC) results in a transient increase of proinflammatory cytokines, which return to baseline levels within 3 d. In contrast to cytokine baseline levels, the myocardium remains capable to respond even stronger to a new stimulus. As the molecular mechanisms for this phenomenon are unknown, we tested whether TAC modulates the innate immune system in mice and changes the inflammatory reaction to a new stimulus.

Methods

Following 3 d of TAC or sham-operation procedure (SOP), LPS (20 mg/kg) or PBS (control) were administered intraperitoneal for 10 min as well as for 6 h. Hemodynamic parameters were recorded to measure the effects of TAC and LPS. After TAC/SOP alone CD14 expression was monitored and after additional 6 h of LPS/PBS the expression of CD14, TLR4 and proinflammatory cytokines were determined by western-blot, ELISA and RNase protection assay, respectively. Following TAC/SOP and 10 min of LPS/PBS, NFκB activation was investigated by EMSA.

Results

TAC induced cardiac hypertrophy and elevated blood pressure. LPS application led to hypotension and other symptoms of sepsis. CD14 expression increased after TAC alone and even further after additional LPS challenge. However, we did not detect changes of TLR4 expression. Also NFκB activation increased after LPS challenge higher in the TAC than in the SOP group. LPS-stimulation induced also higher cytokine expression in the TAC than in the SOP group.

Conclusion

TAC modulates innate immunity by regulating the expression of CD14 and changes the myocardial tissue to respond more powerful to LPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Reference

  1. Asehnoune K, Strassheim D, Mitra S, Yeol KJ, Abraham E (2005) Involvement of PKCalpha/beta in TLR4 and TLR2 dependent activation of NF-kappaB. Cell Signal 17:385–394

    Article  PubMed  CAS  Google Scholar 

  2. Baumgarten G, Knuefermann P, Kalra D, Gao F, Taffet GE, Michael L, Blackshear PJ, Carballo E, Sivasubramanian N, Mann DL (2002) Load-dependent and -independent regulation of proinflammatory cytokine and cytokine receptor gene expression in the adult mammalian heart. Circulation 105:2192–2197

    Article  PubMed  CAS  Google Scholar 

  3. Baumgarten G, Knuefermann P, Nozaki N, Sivasubramanian N, Mann DL, Vallejo JG (2001) In vivo expression of proinflammatory mediators in the adult heart after endotoxin administration: the role of toll-like receptor-4. J Infect Dis 183:1617–1624

    Article  PubMed  CAS  Google Scholar 

  4. Baumgarten G, Knuefermann P, Schuhmacher G, Vervolgyi V, von RJ, Dreiner U, Fink K, Djoufack C, Hoeft A, Grohe C, Knowlton AA, Meyer R (2006) Toll-like receptor 4, nitric oxide, and myocardial depression in endotoxemia. Shock 25:43–49

    Article  PubMed  CAS  Google Scholar 

  5. Bozkurt B, Kribbs SB, Clubb FJ Jr, Michael LH, Didenko VV, Hornsby PJ, Seta Y, Oral H, Spinale FG, Mann DL (1998) Pathophysiologically relevant concentrations of tumor necrosis factor- alpha promote progressive left ventricular dysfunction and remodeling in rats. Circulation 97:1382–1391

    PubMed  CAS  Google Scholar 

  6. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate- phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  7. Cowan DB, Poutias DN, Del Nido PJ, McGowan FX Jr (2000) CD14-independent activation of cardiomyocyte signal transduction by bacterial endotoxin. Am J Physiol Heart 279:H619–H629

    CAS  Google Scholar 

  8. Fearns C, Kravchenko VV, Ulevitch RJ, Loskutoff DJ (1995) Murine CD14 gene expression in vivo: extramyeloid synthesis and regulation by lipopolysaccharide. J Exp Med 181:857–866

    Article  PubMed  CAS  Google Scholar 

  9. Frankenberger M, Pechumer H, Ziegler-Heitbrock HW (1995) Interleukin-10 is upregulated in LPS tolerance. J Inflamm 45:56–63

    PubMed  CAS  Google Scholar 

  10. Frantz S, Kobzik L, Kim YD, Fukazawa R, Medzhitov R, Lee RT, Kelly RA (1999) Toll4 (TLR4) expression in cardiac myocytes in normal and failing myocardium. J Clin Invest 104:271–280

    PubMed  CAS  Google Scholar 

  11. Frey EA, Miller DS, Jahr TG, Sundan A, Bazil V, Espevik T, Finlay BB, Wright SD (1992) Soluble CD14 participates in the response of cells to lipopolysaccharide. J Exp Med 176:1665–1671

    Article  PubMed  CAS  Google Scholar 

  12. Johnson BA, Geha M, Blackwell TK (2000) Similar but distinct effects of the tristetraprolin/TIS11 immediate-early proteins on cell survival. Oncogene 19:1657–1664

    Article  PubMed  CAS  Google Scholar 

  13. Johnson GB, Brunn GJ, Platt JL (2004) Cutting edge: an endogenous pathway to systemic inflammatory response syndrome (SIRS)-like reactions through Toll-like receptor 4. J Immunol 172:20–24

    PubMed  CAS  Google Scholar 

  14. Kapadia S, Lee J, Torre-Amione G, Birdsall HH, Ma TS, Mann DL (1995) Tumor necrosis factor-alpha gene and protein expression in adult feline myocardium after endotoxin administration. J Clin Invest 96:1042–1052

    Article  PubMed  CAS  Google Scholar 

  15. Knuefermann P, Chen P, Misra A, Shi SP, Abdellatif M, Sivasubramanian N (2002) Myotrophin/V-1, a protein up-regulated in the failing human heart and in postnatal cerebellum, converts NFkappa B p50-p65 heterodimers to p50-p50 and p65-p65 homodimers. J Biol Chem 277:23888–23897

    Article  PubMed  CAS  Google Scholar 

  16. Knuefermann P, Nemoto S, Misra A, Nozaki N, Defreitas G, Goyert SM, Carabello BA, Mann DL, Vallejo JG (2002) CD14-deficient mice are protected against lipopolysaccharide-induced cardiac inflammation and left ventricular dysfunction. Circulation 106:2608–2615

    Article  PubMed  CAS  Google Scholar 

  17. Kopp EB, Medzhitov R (1999) The toll-receptor family and control of innate immunity. Curr Opin Immunol 11:13–18

    Article  PubMed  CAS  Google Scholar 

  18. Mann DL (2002) Inflammatory mediators and the failing heart: past, present, and the foreseeable future. Circ Res 91:988–998

    Article  PubMed  CAS  Google Scholar 

  19. Muller-Werdan U, Engelmann H, Werdan K (1998) Cardiodepression by tumor necrosis factor-alpha. Eur Cytokine Netw 9:689–691

    PubMed  CAS  Google Scholar 

  20. Nemoto S, Vallejo JG, Knuefermann P, Misra A, Defreitas G, Carabello BA, Mann DL (2002) Escherichia coli LPS-induced LV dysfunction: role of toll-like receptor-4 in the adult heart. Am J Physiol Heart 282:H2316–H2323

    CAS  Google Scholar 

  21. Ohashi K, Burkart V, Flohe S, Kolb H (2000) Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 164:558–561

    PubMed  CAS  Google Scholar 

  22. Okamura Y, Watari M, Jerud ES, Young DW, Ishizaka ST, Rose J, Chow JC, Strauss JF (2001) The extra domain A of fibronectin activates toll-like receptor 4. J Biol Chem 276:10229–10233

    Article  PubMed  CAS  Google Scholar 

  23. Poltorak A, He X, Smirnova I, Liu MY, Huffel CV, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088

    Article  PubMed  CAS  Google Scholar 

  24. Poltorak A, Smirnova I, He X, Liu MY, Van Huffel C, McNally O, Birdwell D, Alejos E, Silva M, Du X, Thompson P, Chan EK, Ledesma J, Roe B, Clifton S, Vogel SN, Beutler B (1998) Genetic and physical mapping of the Lps locus: identification of the toll-4 receptor as a candidate gene in the critical region. Blood Cells Mol Dis 24:340–355

    Article  PubMed  CAS  Google Scholar 

  25. Qureshi ST, Lariviere L, Leveque G, Clermont S, Moore KJ, Gros P, Malo D (1999) Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J Exp Med 189:615–625

    Article  PubMed  CAS  Google Scholar 

  26. Smiley ST, King JA, Hancock WW (2001) Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. J Immunol 167:2887–2894

    PubMed  CAS  Google Scholar 

  27. Tavener SA, Long EM, Robbins SM, McRae KM, Van Remmen H, Kubes P (2004) Immune cell Toll-like receptor 4 is required for cardiac myocyte impairment during endotoxemia. Circ Res 95:700–707

    Article  PubMed  CAS  Google Scholar 

  28. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249:1431–1433

    PubMed  CAS  Google Scholar 

  29. Ziegler-Heitbrock HW (1995) Molecular mechanism in tolerance to lipopolysaccharide. J Inflamm 45:13–26

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Baumgarten.

Additional information

Returned for 1st revision: 30 November 2005 1st revision received: 28 March 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baumgarten, G., Kim, SC., Stapel, H. et al. Myocardial injury modulates the innate immune system and changes myocardial sensitivity. Basic Res Cardiol 101, 427–435 (2006). https://doi.org/10.1007/s00395-006-0597-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-006-0597-0

Keywords

Navigation