Skip to main content
Log in

Lactobacillus casei Zhang exerts anti-obesity effect to obese glut1 and gut-specific-glut1 knockout mice via gut microbiota modulation mediated different metagenomic pathways

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Obesity is a major risk factor for various metabolic diseases, including metabolic syndrome and type-2 diabetes. Glucose transporter 1 (GLUT1) impairment has been proposed as a mechanism of fat accumulation and glucose tolerance. Our aims were to determine the role of intestinal epithelial glut1 activity in obesity and the mechanism of anti-obesity effect of Lactobacillus casei Zhang (LCZ) intervention in the absence of gut villi-specific glut1 expression.

Methods

This study compared the body weight, intestinal microbiota perturbations, fat mass accumulation, and glucose tolerance (by oral glucose tolerance test) between high-fat diet fed villi-specific glut1 knockout (KO) mice and control mice (glut1 flox/flox) with/without LCZ intervention. The intestinal microbiota was evaluated by metagenomic sequencing.

Results

Our results showed that villi-specific glut1 KO mice had more fat deposition at the premetaphase stage, impaired glucose tolerance, and obvious alterations in gut microbiota compared to control mice. Probiotic administration significantly lowered the body weight, the weights of mesenteric and perirenal white adipose tissues (WAT), and mediated gut microbiota modulation in both types of KO and control mice. The species Barnesiella intestinihominis and Faecalibaculum rodentium might contribute to fasting fat mass accumulation associated with gut-specific glut1 inactivation, while the probiotic-mediated anti-obesity effect was linked to members of the Bacteroides genera, Odoribacter genera and Alistipes finegoldii.

Conclusion

Our study demonstrated that abrogating gut epithelial GLUT1 activity affected the gut microbiota, fat mass accumulation, and glucose tolerance; and LCZ administration reduced fat mass accumulation and central obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Reilly JJ, El-Hamdouchi A, Diouf A et al (2018) Determining the worldwide prevalence of obesity. Lancet 391:1773–1774. https://doi.org/10.1016/S0140-6736(18)30794-3

    Article  PubMed  Google Scholar 

  2. Sahakyan KR, Somers VK, Rodriguez-Escudero JP et al (2015) Normal-weight central obesity: implications for total and cardiovascular mortality. Ann Intern Med 163:827–835. https://doi.org/10.7326/M14-2525

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wang Y, Rimm EB, Stampfer MJ et al (2005) Comparison of abdominal adiposity and overall obesity in predicting risk of type 2 diabetes among men. Am J Clin Nutr 81:555–563. https://doi.org/10.1093/ajcn/81.3.555

    Article  CAS  PubMed  Google Scholar 

  4. Lee M-J, Pramyothin P, Karastergiou K, Fried SK (2014) Deconstructing the roles of glucocorticoids in adipose tissue biology and the development of central obesity. Biochim Biophys Acta 1842:473–481. https://doi.org/10.1016/j.bbadis.2013.05.029

    Article  CAS  PubMed  Google Scholar 

  5. Liu KH, Chan YL, Chan JCN et al (2006) Mesenteric fat thickness as an independent determinant of fatty liver. Int J Obes (Lond) 30:787–793. https://doi.org/10.1038/sj.ijo.0803201

    Article  CAS  Google Scholar 

  6. Liu KH, Chan YL, Chan WB et al (2006) Mesenteric fat thickness is an independent determinant of metabolic syndrome and identifies subjects with increased carotid intima-media thickness. Diabetes Care 29:379–384. https://doi.org/10.2337/diacare.29.02.06.dc05-1578

    Article  PubMed  Google Scholar 

  7. Borruel S, Fernández-Durán E, Alpañés M et al (2013) Global adiposity and thickness of intraperitoneal and mesenteric adipose tissue depots are increased in women with polycystic ovary syndrome (PCOS). J Clin Endocrinol Metab 98:1254–1263. https://doi.org/10.1210/jc.2012-3698

    Article  CAS  PubMed  Google Scholar 

  8. Liu KH, Chan YL, Chan WB et al (2003) Sonographic measurement of mesenteric fat thickness is a good correlate with cardiovascular risk factors: comparison with subcutaneous and preperitoneal fat thickness, magnetic resonance imaging and anthropometric indexes. Int J Obes Relat Metab Disord 27:1267–1273. https://doi.org/10.1038/sj.ijo.0802398

    Article  CAS  PubMed  Google Scholar 

  9. Lam YY, Ha CWY, Campbell CR et al (2012) Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLoS ONE. https://doi.org/10.1371/journal.pone.0034233

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lee M-J, Wu Y, Fried SK (2013) Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications. Mol Aspects Med 34:1–11. https://doi.org/10.1016/j.mam.2012.10.001

    Article  CAS  PubMed  Google Scholar 

  11. DeBosch BJ, Kluth O, Fujiwara H et al (2014) Early-onset metabolic syndrome in mice lacking the intestinal uric acid transporter SLC2A9. Nat Commun 5:4642. https://doi.org/10.1038/ncomms5642

    Article  CAS  PubMed  Google Scholar 

  12. Longo M, Zatterale F, Naderi J et al (2019) Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int J Mol Sci. https://doi.org/10.3390/ijms20092358

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yang Q, Graham TE, Mody N et al (2005) Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436:356–362. https://doi.org/10.1038/nature03711

    Article  CAS  PubMed  Google Scholar 

  14. Massier L, Chakaroun R, Tabei S et al (2020) Adipose tissue derived bacteria are associated with inflammation in obesity and type 2 diabetes. Gut 69:1796–1806. https://doi.org/10.1136/gutjnl-2019-320118

    Article  CAS  PubMed  Google Scholar 

  15. Wueest S, Item F, Lucchini FC et al (2016) Mesenteric fat lipolysis mediates obesity-associated hepatic steatosis and insulin resistance. Diabetes 65:140–148. https://doi.org/10.2337/db15-0941

    Article  CAS  PubMed  Google Scholar 

  16. Klepper J, Akman C, Armeno M et al (2020) Glut1 Deficiency Syndrome (Glut1DS): state of the art in 2020 and recommendations of the international Glut1DS study group. Epilepsia Open 5:354–365. https://doi.org/10.1002/epi4.12414

    Article  PubMed  PubMed Central  Google Scholar 

  17. Koch H, Weber YG (2019) The glucose transporter type 1 (Glut1) syndromes. Epilepsy Behav 91:90–93. https://doi.org/10.1016/j.yebeh.2018.06.010

    Article  PubMed  Google Scholar 

  18. Ivanova N, Peycheva V, Kamenarova K et al (2018) Three novel SLC2A1 mutations in Bulgarian patients with different forms of genetic generalized epilepsy reflecting the clinical and genetic diversity of GLUT1-deficiency syndrome. Seizure 54:41–44. https://doi.org/10.1016/j.seizure.2017.11.014

    Article  PubMed  Google Scholar 

  19. Wang J, Ye C, Chen C et al (2017) Glucose transporter GLUT1 expression and clinical outcome in solid tumors: a systematic review and meta-analysis. Oncotarget 8:16875–16886. https://doi.org/10.1863/oncotarget.15171

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chari M, Yang CS, Lam CKL et al (2011) Glucose transporter-1 in the hypothalamic glial cells mediates glucose sensing to regulate glucose production in vivo. Diabetes 60:1901–1906. https://doi.org/10.2337/db11-0120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Indian Council of Medical Research Task Force, Co-ordinating Unit ICMR, Co-ordinating Unit DBT (2011) ICMR-DBT guidelines for evaluation of probiotics in food. Indian J Med Res 134:22–25

    Google Scholar 

  22. Wu S, Liu Y, Duan Y et al (2018) Intestinal toxicity of deoxynivalenol is limited by supplementation with Lactobacillus plantarum JM113 and consequentially altered gut microbiota in broiler chickens. J Anim Sci Biotechnol 9:74. https://doi.org/10.1186/s40104-018-0286-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim ST, Kim HB, Lee KH et al (2012) Steam-dried ginseng berry fermented with Lactobacillus plantarum controls the increase of blood glucose and body weight in type 2 obese diabetic db/db mice. J Agric Food Chem 60:5438–5445. https://doi.org/10.1021/jf300460g

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Y, Wang L, Zhang J et al (2014) Probiotic Lactobacillus casei Zhang ameliorates high-fructose-induced impaired glucose tolerance in hyperinsulinemia rats. Eur J Nutr 53:221–232. https://doi.org/10.1007/s00394-013-0519-5

    Article  CAS  PubMed  Google Scholar 

  25. Zhong Z, Zhang W, Du R et al (2012) Lactobacillus casei Zhang stimulates lipid metabolism in hypercholesterolemic rats by affecting gene expression in the liver. Eur J Lipid Sci Technol. https://doi.org/10.1002/ejlt.201100118

    Article  Google Scholar 

  26. Young CD, Lewis AS, Rudolph MC et al (2011) Modulation of glucose transporter 1 (GLUT1) expression levels alters mouse mammary tumor cell growth in vitro and in vivo. PLoS ONE 6:e23205. https://doi.org/10.1371/journal.pone.0023205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Franzosa EA, McIver LJ, Rahnavard G et al (2018) Species-level functional profiling of metagenomes and metatranscriptomes. Nat Methods 15:962–968. https://doi.org/10.1038/s41592-018-0176-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ke X, Walker A, Haange S-B et al (2019) Synbiotic-driven improvement of metabolic disturbances is associated with changes in the gut microbiome in diet-induced obese mice. Mol Metab 22:96–109. https://doi.org/10.1016/j.molmet.2019.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang Y, Hou Q, Ma C et al (2020) Lactobacillus casei protects dextran sodium sulfate- or rapamycin-induced colonic inflammation in the mouse. Eur J Nutr 59:1443–1451. https://doi.org/10.1007/s00394-019-02001-9

    Article  CAS  PubMed  Google Scholar 

  30. Park S, Ji Y, Jung H-Y et al (2017) Lactobacillus plantarum HAC01 regulates gut microbiota and adipose tissue accumulation in a diet-induced obesity murine model. Appl Microbiol Biotechnol 101:1605–1614. https://doi.org/10.1007/s00253-016-7953-2

    Article  CAS  PubMed  Google Scholar 

  31. Szeto HH, Liu S, Soong Y et al (2016) Protection of mitochondria prevents high-fat diet-induced glomerulopathy and proximal tubular injury. Kidney Int 90:997–1011. https://doi.org/10.1016/j.kint.2016.06.013

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Y, Sun Q, Li Z et al (2019) Fermented soybean powder containing Bacillus subtilis SJLH001 protects against obesity in mice by improving transport function and inhibiting angiogenesis. J Funct Foods 59:60–70. https://doi.org/10.1016/j.jff.2019.05.033

    Article  CAS  Google Scholar 

  33. Patching SG (2017) Glucose transporters at the blood-brain barrier: function, regulation and gateways for drug delivery. Mol Neurobiol 54:1046–1077. https://doi.org/10.1007/s12035-015-9672-6

    Article  CAS  PubMed  Google Scholar 

  34. Cani PD, Osto M, Geurts L, Everard A (2012) Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes 3:279–288. https://doi.org/10.4161/gmic.19625

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cani PD, Amar J, Iglesias MA et al (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–1772. https://doi.org/10.2337/db06-1491

    Article  CAS  PubMed  Google Scholar 

  36. Henao-Mejia J, Elinav E, Jin C et al (2012) Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482:179–185. https://doi.org/10.1038/nature10809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Le Roy T, Llopis M, Lepage P et al (2013) Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut 62:1787–1794. https://doi.org/10.1136/gutjnl-2012-303816

    Article  CAS  PubMed  Google Scholar 

  38. Tirosh A, Calay ES, Tuncman G et al (2019) The short-chain fatty acid propionate increases glucagon and FABP4 production, impairing insulin action in mice and humans. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aav0120

    Article  PubMed  Google Scholar 

  39. Zagato E, Pozzi C, Bertocchi A et al (2020) Endogenous murine microbiota member Faecalibaculum rodentium and its human homologue protect from intestinal tumour growth. Nat Microbiol 5:511–524. https://doi.org/10.1038/s41564-019-0649-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Magne F, Gotteland M, Gauthier L et al (2020) The Firmicutes/bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients? Nutrients. https://doi.org/10.3390/nu12051474

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gauffin Cano P, Santacruz A, Moya Á, Sanz Y (2012) Bacteroides uniformis CECT 7771 ameliorates metabolic and immunological dysfunction in mice with high-fat-diet induced obesity. PLoS ONE 7:e41079. https://doi.org/10.1371/journal.pone.0041079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang J-Y, Lee Y-S, Kim Y et al (2017) Gut commensal Bacteroides acidifaciens prevents obesity and improves insulin sensitivity in mice. Mucosal Immunol 10:104–116. https://doi.org/10.1038/mi.2016.42

    Article  CAS  PubMed  Google Scholar 

  43. Verdam FJ, Fuentes S, de Jonge C et al (2013) Human intestinal microbiota composition is associated with local and systemic inflammation in obesity. Obesity (Silver Spring) 21:E607-615. https://doi.org/10.1002/oby.20466

    Article  CAS  Google Scholar 

  44. Liu H-Y, Walden TB, Ahl D et al (2019) High-fat diet enriched with bilberry modifies colonic mucus dynamics and restores marked alterations of gut microbiome in rats. Mol Nutr Food Res 63:e1900117. https://doi.org/10.1002/mnfr.201900117

    Article  CAS  PubMed  Google Scholar 

  45. Radka C, Frank M, Rock C, Yao J (2019) Fatty acid activation and utilization by Alistipes finegoldii, a representative Bacteroidetes resident of the human gut microbiome. Mol Microbiol. https://doi.org/10.1111/mmi.14445

    Article  Google Scholar 

  46. Lee C, Hong SN, Paik NY et al (2019) CD1d modulates colonic inflammation in NOD2-/- mice by altering the intestinal microbial composition comprising Acetatifactor muris. J Crohns Colitis 13:1081–1091. https://doi.org/10.1093/ecco-jcc/jjz025

    Article  PubMed  Google Scholar 

  47. Pfeiffer N, Desmarchelier C, Blaut M et al (2012) Acetatifactor muris gen. nov., sp. nov., a novel bacterium isolated from the intestine of an obese mouse. Arch Microbiol 194:901–907. https://doi.org/10.1007/s00203-012-0822-1

    Article  CAS  PubMed  Google Scholar 

  48. Mondot S, Kang S, Furet JP et al (2011) Highlighting new phylogenetic specificities of Crohn’s disease microbiota. Inflamm Bowel Dis 17:185–192. https://doi.org/10.1002/ibd.21436

    Article  CAS  PubMed  Google Scholar 

  49. Hiippala K, Barreto G, Burrello C et al (2020) Novel odoribacter splanchnicus strain and its outer membrane vesicles exert immunoregulatory effects in vitro. Front Microbiol 11:575455. https://doi.org/10.3389/fmicb.2020.575455

    Article  PubMed  PubMed Central  Google Scholar 

  50. Geurts L, Lazarevic V, Derrien M et al (2011) Altered gut microbiota and endocannabinoid system tone in obese and diabetic leptin-resistant mice: impact on apelin regulation in adipose tissue. Front Microbiol 2:149. https://doi.org/10.3389/fmicb.2011.00149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sun J, Qiao Y, Qi C et al (2016) High-fat-diet-induced obesity is associated with decreased antiinflammatory Lactobacillus reuteri sensitive to oxidative stress in mouse Peyer’s patches. Nutrition 32:265–272. https://doi.org/10.1016/j.nut.2015.08.020

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support for this research was provided by the National Natural Science Foundation of China (31720103911, 31972083 and 32001711) and China Agriculture Research System of MOF and MARA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heping Zhang.

Supplementary Information

Below is the link to the electronic supplementary material.

394_2021_2764_MOESM1_ESM.pdf

Supplemental Figure 1 A. Initial body weight of 8-week-old glut1 fl/fl mice (n=20) and glut1 CKO mice (n=11). p<0.001***. B and C. Genotyping of glut1 fl/fl mice (420bp), heterozygous cre+ mice (420bp,204bp),heterozygous cre- mice (420bp) and glut1 CKO mice (none). (PDF 101 KB)

394_2021_2764_MOESM2_ESM.tif

Supplemental Figure 2. LCZ regulated gut microbiota in HFD-fed wild-type mice and villi-specific glut1 KO mice. (A) Genus-level gut microbiota profiles in different groups, including GV(n = 6), GVP(n = 5), GF(n = 6), GFP (n = 6) and GFT (n = 6). Relative abundances of differential abundant genera in 5 groups: (B) Bacteroides, (C) Alistipes, (D) Ruminococcus, and (E) Barnesiella. p<0.05*; p<0.01**. (TIF 1116 KB)

394_2021_2764_MOESM3_ESM.tif

Supplemental Figure 3. LCZ regulated gut microbiota at species-level in HFD-fed wild-type mice and glut1 CKO mice. Relative abundances of differential abundant species in 5 groups: (A) Bacteroides acidifaciens, (B) Bacteroides intestinalis, (C) Bacteroides rodentium, (D) Bacteroides uniformis, (E) Barnesiella intestinihominis,(F) Alistipes finegoldii, (G) Acetatifactor muris, and (H) Ruminococcus gnavus. p<0.05*; p<0.01**. (TIF 1022 KB)

Supplemental Table 1. Statistics of Spearman’s correlation analysis between groups. (XLSX 27 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Q., Zhang, Y., Ma, D. et al. Lactobacillus casei Zhang exerts anti-obesity effect to obese glut1 and gut-specific-glut1 knockout mice via gut microbiota modulation mediated different metagenomic pathways. Eur J Nutr 61, 2003–2014 (2022). https://doi.org/10.1007/s00394-021-02764-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02764-0

Keywords

Navigation