Skip to main content
Log in

Lack of liver steatosis in germ-free mice following hypercaloric diets

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Experimental liver steatosis induced by overfeeding is associated with enhanced gut permeability and endotoxin translocation to the liver. We examined the role of the gut microbiota for steatosis formation by performing the feeding experiments in mice raised under conventional and germ-free (GF) housing.

Methods

Adult wild-type and GF mice were fed a Western-style diet (WSD) or a control diet (CD), the latter combined with liquid fructose supplementation (F) or not, for 8 weeks. Markers of liver steatosis and gut permeability were measured after intervention.

Results

Mice fed a WSD increased body weight compared to those fed a CD (p < 0.01) under conventional, but not under GF conditions. Increased liver weight, liver-to-body-weight ratio and hepatic triglycerides observed in both the WSD and the CD + F groups, when compared with the CD group, were not apparent under GF conditions, whereas elevated plasma triglycerides were visible (p < 0.05). Wild-type mice fed a WSD or a CD + F, respectively, had thinner adherent mucus layer compared to those fed a CD (p < 0.01), whereas GF mice had always a thin mucus layer independently of the diet. GF mice fed a CD showed increased plasma levels of FITC-dextran 4000 (1.9-fold, p < 0.05) and intestinal fatty acid-binding protein-2 (2.4-fold, p < 0.05) compared with wild-type mice.

Conclusions

GF housing results in an impaired weight gain and a lack of steatosis following a WSD. Also the fructose-induced steatosis, which is unrelated to body weight changes, is absent in GF mice. Thus, diet-induced experimental liver steatosis depends in multiple ways on intestinal bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cusi K (2012) Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: pathophysiology and clinical implications. Gastroenterology 142:711–725.e6

    Article  CAS  PubMed  Google Scholar 

  2. Yki-Järvinen H (2014) Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol 2:901–910

    Article  CAS  PubMed  Google Scholar 

  3. Machado MV, Cortez-Pinto H (2011) No need for a large belly to have NASH. J Hepatol 54:1090–1093

    Article  PubMed  Google Scholar 

  4. Stanton MC, Chen SC, Jackson JV, Rojas-Triana A, Kinsley D, Cui L, Fine JS, Greenfeder S, Bober LA, Jenh CH (2011) Inflammatory signals shift from adipose to liver during high fat feeding and influence the development of steatohepatitis in mice. J Inflamm (Lond) 8:8

    Article  CAS  Google Scholar 

  5. Volynets V, Louis S, Pretz D, Lang L, Ostaff MJ, Wehkamp J, Bischoff SC (2017) Intestinal barrier function and the gut microbiome are differentially affected in mice fed a western-style diet or drinking water supplemented with fructose. J Nutr 147:770–780

    Article  CAS  PubMed  Google Scholar 

  6. Spruss A, Kanuri G, Stahl C, Bischoff SC, Bergheim I (2012) Metformin protects against the development of fructose-induced steatosis in mice: role of the intestinal barrier function. Lab Invest 92:1020–1032

    Article  CAS  PubMed  Google Scholar 

  7. Reichold A, Brenner SA, Spruss A, Förster-Fromme K, Bergheim I, Bischoff SC (2014) Bifidobacterium adolescentis protects from the development of nonalcoholic steatohepatitis in a mouse model. J Nutr Biochem 25:118–125

    Article  CAS  Google Scholar 

  8. Spruss A, Kanuri G, Wagnerberger S, Haub S, Bischoff SC, Bergheim I (2009) Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice. Hepatology 50:1094–1104

    Article  CAS  Google Scholar 

  9. Volynets V, Reichold A, Bárdos G, Rings A, Bleich A, Bischoff SC (2016) Assessment of the intestinal barrier with five different permeability tests in healthy C57BL/6J and BALB/cJ mice. Dig Dis Sci 61:737–746

    Article  CAS  PubMed  Google Scholar 

  10. Schroyen M, Stinckens A, Verhelst R, Janssens S, Niewold T, Buys N (2011) IFABP expression as diagnostic tool for integrity of epithelium. Commun Agric Appl Biol Sci 76:53–56

    CAS  PubMed  Google Scholar 

  11. Johansson ME, Hansson GC (2012) Preservation of mucus in histological sections, immunostaining of mucins in fixed tissue, and localization of bacteria with FISH. Methods Mol Biol 842:229–235

    Article  CAS  PubMed  Google Scholar 

  12. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wehkamp J, Wang G, Kübler I, Nuding S, Gregorieff A, Schnabel A, Kays RJ, Fellermann K, Burk O, Schwab M, Clevers H, Bevins CL, Stange EF (2007) The Paneth cell alpha-defensin deficiency of ileal Crohn’s disease is linked to Wnt/Tcf-4. J Immunol 179:3109–3118

    Article  CAS  PubMed  Google Scholar 

  14. Ferré P, Foufelle F (2010) Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes Obes Metab 2:83–92

    Article  Google Scholar 

  15. Johansson ME, Ambort D, Pelaseyed T, Schütte A, Gustafsson JK, Ermund A, Subramani DB, Holmén-Larsson JM, Thomsson KA, Bergström JH, van der Post S, Rodriguez-Piñeiro AM, Sjövall H, Bäckström M, Hansson GC (2011) Composition and functional role of the mucus layers in the intestine. Cell Mol Life Sci 68:3635–3641

    Article  CAS  PubMed  Google Scholar 

  16. Madsen J, Nielsen O, Tornøe I, Thim L, Holmskov U (2007) Tissue localization of human trefoil factors 1, 2, and 3. J Histochem Cytochem 55:505–513

    Article  CAS  PubMed  Google Scholar 

  17. Bergheim I, Weber S, Vos M, Krämer S, Volynets V, Kaserouni S, McClain CJ, Bischoff SC (2008) Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin. J Hepatol 48:983–992

    Article  CAS  Google Scholar 

  18. Tremaroli V, Backhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489:242–249

    Article  CAS  PubMed  Google Scholar 

  19. Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101:15718–15723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gordon HA, Pesti L (1972) The gnotobiotic animal as a tool in the study of host microbial relationships. Bacteriol Rev 35:390–429

    Google Scholar 

  21. Gustafsson BE, Carlstedt-Duke B (1984) Intestinal water-soluble mucins in germfree, exgermfree and conventional animals. Acta Pathol Microbiol Immunol Scand 92:247–252

    CAS  Google Scholar 

  22. Fukushima K, Sasaki I, Ogawa H, Naito H, Funayama Y, Matsuno S (1999) Colonization of microflora in mice: mucosal defense against luminal bacteria. J Gastroenterol 34:54–60

    Article  CAS  PubMed  Google Scholar 

  23. Damms-Machado A, Louis S, Schnitzer A, Volynets V, Rings A, Basrai M, Bischoff SC (2017) Gut permeability is related to body weight, fatty liver disease, and insulin resistance in obese individuals undergoing weight reduction. Am J Clin Nutr 105:127–135

    Article  CAS  PubMed  Google Scholar 

  24. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR, Muehlbauer MJ, Ilkayeva O, Semenkovich CF, Funai K, Hayashi DK, Lyle BJ, Martini MC, Ursell LK, Clemente JC, Van Treuren W, Walters WA, Knight R, Newgard CB, Heath AC, Gordon JI (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341:1241214

    Article  CAS  PubMed  Google Scholar 

  25. Lynch SV, Pedersen O (2016) The human intestinal microbiome in health and disease. N Engl J Med 375:2369–2379

    Article  CAS  PubMed  Google Scholar 

  26. Tilg H, Moschen AR (2014) Microbiota and diabetes: an evolving relationship. Gut 63:1513–1521

    Article  CAS  PubMed  Google Scholar 

  27. Duparc T, Plovier H, Marrachelli VG, Van Hul M, Essaghir A, Ståhlman M, Matamoros S, Geurts L, Pardo-Tendero MM, Druart C, Delzenne NM, Demoulin JB, van der Merwe SW, van Pelt J, Bäckhed F, Monleon D, Everard A, Cani PD (2017) Hepatocyte MyD88 affects bile acids, gut microbiota and metabolome contributing to regulate glucose and lipid metabolism. Gut 66:620–632

    Article  CAS  PubMed  Google Scholar 

  28. Geurts L, Neyrinck AM, Delzenne NM, Knauf C, Cani PD (2014) Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: novel insights into molecular targets and interventions using prebiotics. Benef Microbes 5:3–17

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported in part by a Grant from the German Research Foundation (BI 424/8-1; to SCB).

Author information

Authors and Affiliations

Authors

Contributions

SCB and AB conception and design of the study; SCB funding of the study; VV and MB conduction of the studies, AR, DP, UN and VV acquisition of data; SCB and VV statistical analysis and interpretation of data; AR technical and material support; AB and MB provided the germ-free facility; SCB and VV drafting the manuscript; AB and MB revising the manuscript critically for important intellectual content; SCB had primary responsibility for final content.

Corresponding author

Correspondence to Stephan C. Bischoff.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaden-Volynets, V., Basic, M., Neumann, U. et al. Lack of liver steatosis in germ-free mice following hypercaloric diets. Eur J Nutr 58, 1933–1945 (2019). https://doi.org/10.1007/s00394-018-1748-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-018-1748-4

Keywords

Navigation