Skip to main content
Log in

Clinical and echocardiographic correlates of serum copper and zinc in acute and chronic heart failure

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Aim

Emerging evidence suggests a pathophysiological role of micronutrient dyshomeostasis in heart failure, including promotion of adverse remodeling and clinical deterioration. We sought to evaluate serum copper (Cu) and zinc (Zn) levels in acute (AHF) and chronic (CHF) heart failure.

Methods

We studied 125 patients, 71 % male, aged 69 ± 11 years, 37 % with preserved left ventricular ejection fraction (LVEF ≥40 %) (HFPEF), including 81 with AHF and 44 with CHF; 21 healthy volunteers served as controls. Serum Cu and Zn levels were determined using air–acetylene flame atomic absorption spectrophotometry.

Results

Serum Cu levels were significantly higher in AHF (p = 0.006) and CHF (p = 0.002) patients compared to controls after adjusting for age, gender and comorbidities, whereas they did not differ between AHF and CHF (p = 0.840). Additionally, serum Cu in patients with LVEF <40 % was significantly higher compared to both controls (p < 0.001) and HFPEF patients (p = 0.003). Serum Zn was significantly lower in AHF (p < 0.001) and CHF (p = 0.039) compared to control after adjusting for the above-mentioned variables. Moreover, serum Zn was significantly lower in AHF than in CHF (p = 0.015). In multiple linear regression, LVEF (p = 0.033) and E/e ratio (p = 0.006) were independent predictors of serum Cu in total heart failure population, while NYHA class (p < 0.001) and E/e ratio (p = 0.007) were independent predictors of serum Zn.

Conclusion

Serum Cu was increased both in AHF and CHF and correlated with LV systolic and diastolic function. Serum Zn, in contrast, was decreased both in AHF and CHF and independently predicted by clinical status and LV diastolic function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ferreira JP, Santos M, Almeida S, Marques I, Bettencourt P, Carvalho H (2013) Tailoring diuretic therapy in acute heart failure: insight into early diuretic response predictors. Clin Res Cardiol 102:745–753

    Article  PubMed  CAS  Google Scholar 

  2. Soukoulis V, Dihu JB, Sole M, Anker SD, Cleland J, Fonarow GC, Metra M, Pasini E, Strzelczyk T, Taegtmeyer H, Gheorghiade M (2009) Micronutrient deficiencies an unmet need in heart failure. J Am Coll Cardiol 54:1660–1673

    Article  PubMed  CAS  Google Scholar 

  3. Zugck C, Franke J, Gelbrich G, Frankenstein L, Scheffold T, Pankuweit S, Duengen HD, Regitz-Zagrosek V, Pieske B, Neumann T, Rauchhaus M, Angermann CE, Katus HA, Ertl GE, Stork S (2012) Implementation of pharmacotherapy guidelines in heart failure: experience from the German Competence Network Heart Failure. Clin Res Cardiol 101:263–272

    Article  PubMed  CAS  Google Scholar 

  4. Weber KT, Weglicki WB, Simpson RU (2009) Macro- and micronutrient dyshomeostasis in the adverse structural remodelling of myocardium. Cardiovasc Res 81:500–508

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. McKeag NA, McKinley MC, Woodside JV, Harbinson MT, McKeown PP (2012) The role of micronutrients in heart failure. J Acad Nutr Diet 112:870–886

    Article  PubMed  CAS  Google Scholar 

  6. Andreini C, Banci L, Bertini I, Rosato A (2008) Occurrence of copper proteins through the three domains of life: a bioinformatic approach. J Proteome Res 7:209–216

    Article  PubMed  CAS  Google Scholar 

  7. Wang Y, Hodgkinson V, Zhu S, Weisman GA, Petris MJ (2011) Advances in the understanding of mammalian copper transporters. Adv Nutr 2:129–137

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Vasto S, Mocchegiani E, Candore G, Listi F, Colonna-Romano G, Lio D, Malavolta M, Giacconi R, Cipriano C, Caruso C (2006) Inflammation, genes and zinc in ageing and age-related diseases. Biogerontology 7:315–327

    Article  PubMed  CAS  Google Scholar 

  9. Oster O (1993) Trace element concentrations (Cu, Zn, Fe) in sera from patients with dilated cardiomyopathy. Clin Chim Acta 214:209–218

    Article  PubMed  CAS  Google Scholar 

  10. Chou HT, Yang HL, Tsou SS, Ho RK, Pai PY, Hsu HB (1998) Status of trace elements in patients with idiopathic dilated cardiomyopathy in central Taiwan. Zhonghua Yi Xue Za Zhi (Taipei) 61:193–198

    CAS  Google Scholar 

  11. da Cunha S, Albanesi Filho FM, da Cunha Bastos VL, Antelo DS, Souza MM (2002) Thiamin, selenium, and copper levels in patients with idiopathic dilated cardiomyopathy taking diuretics. Arq Bras Cardiol 79(5):454–465

  12. Topuzoglu G, Erbay AR, Karul AB, Yensel N (2003) Concentrations of copper, zinc, and magnesium in sera from patients with idiopathic dilated cardiomyopathy. Biol Trace Elem Res 95:11–17

    Article  PubMed  CAS  Google Scholar 

  13. Salehifar E, Shokrzadeh M, Ghaemian A, Aliakbari S, Saravi SSS (2008) The study of Cu and Zn serum levels in idiopathic dilated cardiomyopathy (IDCMP) patients and its comparison with healthy volunteers. Biol Trace Elem Res 125:97–108

    Article  PubMed  CAS  Google Scholar 

  14. de Lorgeril M, Salen P, Accominotti M, Cadau M, Steghens JP, Boucher F, de Leiris J (2001) Dietary and blood antioxidants in patients with chronic heart failure. Insights into the potential importance of selenium in heart failure. Eur J Heart Fail 3:661–669

    Article  PubMed  Google Scholar 

  15. Malek F, Dvorak J, Jiresova E, Spacek R (2003) Difference of baseline serum copper levels between groups of patients with different one year mortality and morbidity and chronic heart failure. Cent Eur J Public Health 11:198–201

    PubMed  CAS  Google Scholar 

  16. Kosar F, Sahin I, Taskapan C, Kucukbay Z, Gullu H, Taskapan H, Cehreli S (2006) Trace element status (Se, Zn, Cu) in heart failure. Anadolu Kardiyol Derg 6:216–220

    PubMed  Google Scholar 

  17. Shokrzadeh M, Ghaemian A, Salehifar E, Aliakbari S, Saravi SS, Ebrahimi P (2009) Serum zinc and copper levels in ischemic cardiomyopathy. Biol Trace Elem Res 127:116–123

    Article  PubMed  CAS  Google Scholar 

  18. Golik A, Cohen N, Ramot Y, Maor J, Moses R, Weissgarten J, Leonov Y, Modai D (1993) Type II diabetes mellitus, congestive heart failure, and zinc metabolism. Biol Trace Elem Res 39:171–175

    Article  PubMed  CAS  Google Scholar 

  19. Ripa S, Ripa R, Giustiniani S (1998) Are failured cardiomyopathies a zinc-deficit related disease? A study on Zn and Cu in patients with chronic failured dilated and hypertrophic cardiomyopathies. Minerva Med 89:397–403

    PubMed  CAS  Google Scholar 

  20. Arroyo M, Laguardia SP, Bhattacharya SK, Nelson MD, Johnson PL, Carbone LD, Newman KP, Weber KT (2006) Micronutrients in African-Americans with decompensated and compensated heart failure. Transl Res 148:301–308

    Article  PubMed  CAS  Google Scholar 

  21. Canatan H, Bakan I, Akbulut M, Halifeoglu I, Cikim G, Baydas G, Kilic N (2004) Relationship among levels of leptin and zinc, copper, and zinc/copper ratio in plasma of patients with essential hypertension and healthy normotensive subjects. Biol Trace Elem Res 100:117–123

    Article  PubMed  CAS  Google Scholar 

  22. Afridi HI, Kazi TG, Kazi NG, Jamali MK, Arain MB, Baig JA, Sirajuddin, Kandhro GA, Wadhwa SK, Shah AQ (2010) Evaluation of cadmium, lead, nickel and zinc status in biological samples of smokers and nonsmokers hypertensive patients. J Hum Hypertens 24:34–43

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Tubek S (2007) Correlations between serum zinc concentrations and oxygen balance parameters in patients with primary arterial hypertension. Biol Trace Elem Res 115:213–222

    Article  PubMed  CAS  Google Scholar 

  24. Shukla N, Maher J, Masters J, Angelini GD, Jeremy JY (2006) Does oxidative stress change ceruloplasmin from a protective to a vasculopathic factor? Atherosclerosis 187:238–250

    Article  PubMed  CAS  Google Scholar 

  25. Wiernsperger N, Rapin J (2010) Trace elements in glucometabolic disorders: an update. Diabetol Metab Syndr 2:70

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Benes B, Spevackova V, Smid J, Batariova A, Cejchanova M, Zitkova L (2005) Effects of age, BMI, smoking and contraception on levels of Cu, Se and Zn in the blood of the population in the Czech Republic. Cent Eur J Public Health 13:202–207

    PubMed  CAS  Google Scholar 

  27. Lopes PA, Santos MC, Vicente L, Rodrigues MO, Pavao ML, Neve J, Viegas-Crespo AM (2004) Trace element status (Se, Cu, Zn) in healthy Portuguese subjects of Lisbon population: a reference study. Biol Trace Elem Res 101:1–17

    Article  PubMed  CAS  Google Scholar 

  28. Pearson P, Britton J, McKeever T, Lewis SA, Weiss S, Pavord I, Fogarty A (2005) Lung function and blood levels of copper, selenium, vitamin C and vitamin E in the general population. Eur J Clin Nutr 59:1043–1048

    Article  PubMed  CAS  Google Scholar 

  29. Karadag F, Cildag O, Altinisik M, Kozaci LD, Kiter G, Altun C (2004) Trace elements as a component of oxidative stress in COPD. Respirology 9:33–37

    Article  PubMed  Google Scholar 

  30. Ghayour-Mobarhan M, Taylor A, Kazemi-Bajestani SM, Lanham-New S, Lamb DJ, Vaidya N, Livingstone C, Wang T, Ferns GA (2008) Serum zinc and copper status in dyslipidaemic patients with and without established coronary artery disease. Clin Lab 54:321–329

    PubMed  CAS  Google Scholar 

  31. Yan YQ, Zou LJ (2012) Relation between zinc, copper, and magnesium concentrations following cardiopulmonary bypass and postoperative atrial fibrillation in patients undergoing coronary artery bypass grafting. Biol Trace Elem Res 148:148–153

    Article  PubMed  CAS  Google Scholar 

  32. Nieminen MS, Bohm M, Cowie MR, Drexler H, Filippatos GS, Jondeau G, Hasin Y, Lopez-Sendon J, Mebazaa A, Metra M, Rhodes A, Swedberg K, Priori SG, Garcia MA, Blanc JJ, Budaj A, Dean V, Deckers J, Burgos EF, Lekakis J, Lindahl B, Mazzotta G, Morais J, Oto A, Smiseth OA, Dickstein K, Albuquerque A, Conthe P, Crespo-Leiro M, Ferrari R, Follath F, Gavazzi A, Janssens U, Komajda M, Moreno R, Singer M, Singh S, Tendera M, Thygesen K (2005) Executive summary of the guidelines on the diagnosis and treatment of acute heart failure: the Task Force on Acute Heart Failure of the European Society of Cardiology. Eur Heart J 26:384–416

    Article  PubMed  Google Scholar 

  33. Swedberg K, Cleland J, Dargie H, Drexler H, Follath F, Komajda M, Tavazzi L, Smiseth OA, Gavazzi A, Haverich A, Hoes A, Jaarsma T, Korewicki J, Levy S, Linde C, Lopez-Sendon JL, Nieminen MS, Pierard L, Remme WJ (2005) Guidelines for the diagnosis and treatment of chronic heart failure: executive summary (update 2005): the task force for the diagnosis and treatment of chronic heart failure of the european society of cardiology. Eur Heart J 26:1115–1140

    Article  PubMed  Google Scholar 

  34. Kouremenou-Dona E, Dona A, Papoutsis J, Spiliopoulou C (2006) Copper and zinc concentrations in serum of healthy Greek adults. Sci Total Environ 359:76–81

    Article  PubMed  CAS  Google Scholar 

  35. Malek F, Spacek R, Polasek R, Karel L, Stanka P, Zenahlikova M, Jiresova E (2001) Serum copper levels in patients with chronic heart failure associated with systolic left ventricular dysfunction and its relation to the severity of cardiac failure. Vnitr Lek 47:753–756

    PubMed  CAS  Google Scholar 

  36. Tapiero H, Townsend DM, Tew KD (2003) Trace elements in human physiology and pathology. Copper. Biomed Pharmacother 57:386–398

    Article  PubMed  CAS  Google Scholar 

  37. Fox PL, Mazumder B, Ehrenwald E, Mukhopadhyay CK (2000) Ceruloplasmin and cardiovascular disease. Free Radic Biol Med 28:1735–1744

    Article  PubMed  CAS  Google Scholar 

  38. Mukhopadhyay CK, Mazumder B, Fox PL (2000) Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency. J Biol Chem 275:21048–21054

    Article  PubMed  CAS  Google Scholar 

  39. Chepelev NL, Willmore WG (2011) Regulation of iron pathways in response to hypoxia. Free Radic Biol Med 50:645–666

    Article  PubMed  CAS  Google Scholar 

  40. Cotter G, Felker GM, Adams KF, Milo-Cotter O, O’Connor CM (2008) The pathophysiology of acute heart failure—is it all about fluid accumulation? Am Heart J 155:9–18

    Article  PubMed  Google Scholar 

  41. Holscher M, Schafer K, Krull S, Farhat K, Hesse A, Silter M, Lin Y, Pichler BJ, Thistlethwaite P, El-Armouche A, Maier LS, Katschinski DM, Zieseniss A (2012) Unfavourable consequences of chronic cardiac HIF-1alpha stabilization. Cardiovasc Res 94:77–86

    Article  PubMed  Google Scholar 

  42. Dadu RT, Dodge R, Nambi V, Virani SS, Hoogeveen RC, Smith NL, Chen F, Pankow JS, Guild C, Tang WH, Boerwinkle E, Hazen SL, Ballantyne CM (2013) Ceruloplasmin and heart failure in the atherosclerosis risk in communities (ARIC) study, Circ Heart Fail 6(5):936–943

  43. Danzeisen R, Araya M, Harrison B, Keen C, Solioz M, Thiele D, McArdle HJ (2007) How reliable and robust are current biomarkers for copper status? Br J Nutr 98:676–683

    Article  PubMed  CAS  Google Scholar 

  44. Harvey LJ, Ashton K, Hooper L, Casgrain A, Fairweather-Tait SJ (2009) Methods of assessment of copper status in humans: a systematic review. Am J Clin Nutr 89:2009S–2024S

    Article  PubMed  CAS  Google Scholar 

  45. de Romana DL, Olivares M, Uauy R, Araya M (2011) Risks and benefits of copper in light of new insights of copper homeostasis. J Trace Elem Med Biol 25:3–13

    Article  PubMed  Google Scholar 

  46. Gandhi MS, Deshmukh PA, Kamalov G, Zhao T, Zhao W, Whaley JT, Tichy JR, Bhattacharya SK, Ahokas RA, Sun Y, Gerling IC, Weber KT (2008) Causes and consequences of zinc dyshomeostasis in rats with chronic aldosteronism. J Cardiovasc Pharmacol 52:245–252

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Mocchegiani E, Muzzioli M, Cipriano C, Giacconi R (1998) Zinc, T-cell pathways, aging: role of metallothioneins. Mech Ageing Dev 106:183–204

    Article  PubMed  CAS  Google Scholar 

  48. Kamalov G, Bhattacharya SK, Weber KT (2010) Congestive heart failure: where homeostasis begets dyshomeostasis. J Cardiovasc Pharmacol 56:320–328

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Whitted AD, Stanifer JW, Dube P, Borkowski BJ, Yusuf J, Komolafe BO, Davis RC Jr, Soberman JE, Weber KT (2010) A dyshomeostasis of electrolytes and trace elements in acute stressor states: impact on the heart. Am J Med Sci 340:48–53

    Article  PubMed  Google Scholar 

  50. Koren-Michowitz M, Dishy V, Zaidenstein R, Yona O, Berman S, Weissgarten J, Golik A (2005) The effect of losartan and losartan/hydrochlorothiazide fixed-combination on magnesium, zinc, and nitric oxide metabolism in hypertensive patients: a prospective open-label study. Am J Hypertens 18:358–363

    Article  PubMed  CAS  Google Scholar 

  51. Khan MU, Cheema Y, Shahbaz AU, Ahokas RA, Sun Y, Gerling IC, Bhattacharya SK, Weber KT (2012) Mitochondria play a central role in nonischemic cardiomyocyte necrosis: common to acute and chronic stressor states. Pflugers Arch 464:123–131

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Borkowski BJ, Cheema Y, Shahbaz AU, Bhattacharya SK, Weber KT (2011) Cation dyshomeostasis and cardiomyocyte necrosis: the Fleckenstein hypothesis revisited. Eur Heart J 32:1846–1853

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lowe NM, Fekete K, Decsi T (2009) Methods of assessment of zinc status in humans: a systematic review. Am J Clin Nutr 89:2040S–2051S

    Article  PubMed  CAS  Google Scholar 

  54. Lukaski HC (2005) Low dietary zinc decreases erythrocyte carbonic anhydrase activities and impairs cardiorespiratory function in men during exercise. Am J Clin Nutr 81:1045–1051

    PubMed  CAS  Google Scholar 

  55. Franke J, Zugck C, Wolter JS, Frankenstein L, Hochadel M, Ehlermann P, Winkler R, Nelles M, Zahn R, Katus HA, Senges J (2012) A decade of developments in chronic heart failure treatment: a comparison of therapy and outcome in a secondary and tertiary hospital setting. Clin Res Cardiol 101:1–10

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Athanasia Kokkinari for her excellent technical assistance.

Conflict of interest

Gerasimos Gavrielatos: Currently, after the completion of the study, Dr. Gavrielatos works as a Medical Advisor in Boehringer Ingelheim and reports no conflict of interest related to the study. All other authors report no conflict of interest related to the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Parissis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexanian, I., Parissis, J., Farmakis, D. et al. Clinical and echocardiographic correlates of serum copper and zinc in acute and chronic heart failure. Clin Res Cardiol 103, 938–949 (2014). https://doi.org/10.1007/s00392-014-0735-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-014-0735-x

Keywords

Navigation