Skip to main content

Advertisement

Log in

Performance evaluation of CMIP6 GCMs for the projections of precipitation extremes in Pakistan

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Extreme weather events are more detrimental to human culture and ecosystems than typical weather patterns. A multimodel ensemble (MME) of the top-performing global climate models (GCMs) to simulate 11 precipitation extremes was selected using a hybrid method to project their changes in Pakistan. It also compared the benefits of using all GCMs compared to using only selected GCMs when projecting precipitation extremes for two future periods (2020–2059) and (2060–2099) for four shared socioeconomic pathways (SSPs), SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. Results showed that EC-Earth3-Veg, MRI-ESM2-0 and NorESM2-MM performed best among GCMs in simulating historical and projecting future precipitation extremes. Compared to the MME of all GCMs, the uncertainty in future projections of all precipitation indices of the selected GCMs were significantly smaller. The MME median of the selected GCMs showed increased precipitation extremes over most of Pakistan. The greater increases were in RX1day by 6–12 mm, RX5day by 12–20 mm, Prcptot by 40–50 mm, R95ptot by greater than 30 mm, R99ptot by more than 9 mm, R4mm ≥ 4 mm by 0–4 days, R10mm by 2–6 days, R20mm by 1–3 days, and SDII by 1 mm/day, CWD by one day, CDD by 0–4 days in the northern high elevated areas for SSP5-8.5 in the late future. These results emphasize the greater influence of climate change on precipitation extremes in the northern, high-elevation areas, which provide the majority of the country’s water. This emphasizes the necessity to adopt suitable climate change mitigation strategies for sustainable development, particularly in the country's northern regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of code

The codes used for data processing can be provided on request to the corresponding author.

Availability of data

All the data are available in the public domain at the links provided in the texts.

References

  • Abbas F, Ahmad A, Safeeq M et al (2014) Changes in precipitation extremes over arid to semi-arid and subhumid Punjab, Pakistan. Theor Appl Climatol 116:671–680. https://doi.org/10.1007/s00704-013-0988-8

    Article  Google Scholar 

  • Abbas F, Sarwar N, Ibrahim M et al (2018) Patterns of climate extremes in the coastal and highland regions of Balochistan, Pakistan. Earth Interact 22:1–23

    Article  Google Scholar 

  • Abbas A, Ullah S, Ullah W et al (2022) Evaluation and projection of precipitation in Pakistan using the Coupled Model Intercomparison Project Phase 6 model simulations. Int J Climatol 42:6665–6684. https://doi.org/10.1002/joc.7602

    Article  Google Scholar 

  • Abbas A, Bhatti AS, Ullah S et al (2023) Projection of precipitation extremes over South Asia from CMIP6 GCMs. J Arid Land 15:274–296. https://doi.org/10.1007/s40333-023-0050-3

    Article  Google Scholar 

  • Agyekum J, Annor T, Lamptey B et al (2018) Evaluation of CMIP5 global climate models over the volta Basin: precipitation. Adv Meteorol 1:24

    Google Scholar 

  • Agyekum J, Annor T, Quansah E et al (2022) Extreme precipitation indices over the Volta Basin: CMIP6 model evaluation. Sci Afr 16:e01181. https://doi.org/10.1016/j.sciaf.2022.e01181

    Article  Google Scholar 

  • Ahmed M, Schmitz M (2011) Economic assessment of the impact of climate change on the agriculture of Pakistan. Bus Econ Horizons 4:1–12

    Article  Google Scholar 

  • Ahmed K, Iqbal Z, Khan N et al (2020) Quantitative assessment of precipitation changes under CMIP5 RCP scenarios over the northern sub-Himalayan region of Pakistan. Environ Dev Sustain 22:7831–7845. https://doi.org/10.1007/s10668-019-00548-5

    Article  Google Scholar 

  • Akinsanola AA, Zhou W (2019) Projection of West African summer monsoon rainfall in dynamically downscaled CMIP5 models. Clim Dyn 53:81–95. https://doi.org/10.1007/s00382-018-4568-6

    Article  Google Scholar 

  • Ali S, Li D, Congbin F, Khan F (2015) Twenty first century climatic and hydrological changes over Upper Indus Basin of Himalayan region of Pakistan. Environ Res Lett 10:14007

    Article  Google Scholar 

  • Ali S, Eum H-I, Cho J et al (2019) Assessment of climate extremes in future projections downscaled by multiple statistical downscaling methods over Pakistan. Atmos Res 222:114–133. https://doi.org/10.1016/j.atmosres.2019.02.009

    Article  Google Scholar 

  • Ali MA, Hassan M, Mehmood M et al (2022) The potential impact of climate extremes on cotton and wheat crops in Southern Punjab. Pak Sustain 14:1609

    Article  Google Scholar 

  • Almazroui M, Saeed S, Saeed F et al (2020) Projections of precipitation and temperature over the South Asian countries in CMIP6. Earth Syst Environ 4:297–320. https://doi.org/10.1007/s41748-020-00157-7

    Article  Google Scholar 

  • Bhatti AS, Wang G, Ullah W et al (2020) Trend in extreme precipitation indices based on long term in situ precipitation records over Pakistan. Water 12:797

    Article  Google Scholar 

  • Chaudhry Q-Z, Mahmood A, Rasul G, Afzaal M (2009) Climate change indicators of Pakistan. Pakistan Meterological Department, Islamabad

    Google Scholar 

  • Chen C-A, Hsu H-H, Liang H-C (2021) Evaluation and comparison of CMIP6 and CMIP5 model performance in simulating the seasonal extreme precipitation in the Western North Pacific and East Asia. Weather Clim Extrem 31:100303. https://doi.org/10.1016/j.wace.2021.100303

    Article  Google Scholar 

  • Data C (2009) Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation. World Meteorol Organ

  • Dibaba WT, Demissie TA, Miegel K (2020) Drivers and implications of land use/land cover dynamics in Finchaa catchment, northwestern Ethiopia. Land 9:113

    Article  Google Scholar 

  • Di Santo N, Russo I, Sisto R (2022) Climate Change and Natural Resource Scarcity: A Literature Review on Dry Farming. Land 11:2102

    Article  Google Scholar 

  • Easterling DR, Arnold JR, Knutson T, Kunkel KE, LeGrande AN, Leung LR, Vose RS, Waliser DE, Wehner MF (2017) Precipitation change in the United States. Fourth Natl Clim Assess. https://doi.org/10.7930/J0H993CC

  • Edenhofer O, Pichs-Madruga R, Sokona Y, Minx JC (2014) Change 2014: mitigation of climate change. In: Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change

  • Eyring V, Bony S, Meehl GA et al (2016) Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9:1937–1958. https://doi.org/10.5194/gmd-9-1937-2016

    Article  Google Scholar 

  • Flato G, Marotzke J, Abiodun B, et al (2014) Evaluation of climate models. In: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, pp 741–866

  • Goodland R, Anhang J (2009) Livestock and climate change: what if the key actors in climate change are... cows, pigs, and chickens? Livest Clim Chang what if key actors Clim Chang are. cows, pigs, chickens?

  • Hamed MM, Khan N, Muhammad MKI, Shahid S (2022a) Ranking of empirical evapotranspiration models in different climate zones of Pakistan. Land 11:2168. https://doi.org/10.3390/land11122168

    Article  Google Scholar 

  • Hamed MM, Nashwan MS, Shahid S (2022b) Inter-comparison of historical simulation and future projection of rainfall and temperature by CMIP5 and CMIP6 GCMs over egypt. Int J Climatol 42:4316–4332. https://doi.org/10.1002/joc.7468

    Article  Google Scholar 

  • Hamed MM, Nashwan MS, Shiru MS, Shahid S (2022c) Comparison between CMIP5 and CMIP6 models over MENA region using historical simulations and future projections. Sustainability 14:10375. https://doi.org/10.3390/su141610375

    Article  Google Scholar 

  • Hassan SA, Ansari M (2015) Hydro-climatic aspects of Indus River flow propagation. Arab J Geosci 8:10977–10982

    Article  Google Scholar 

  • Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. Weather Clim Extrem 10:4–10. https://doi.org/10.1016/j.wace.2015.08.001

    Article  Google Scholar 

  • Hausfather Z (2018) Explainer: how ‘shared socioeconomic pathways’ explore future climate change. Carbon Br 19.

  • Heureux AMC, Alvar-Beltrán J, Manzanas R et al (2022) Climate trends and extremes in the indus River Basin, Pakistan: implications for agricultural production. Atmos (Basel). https://doi.org/10.3390/atmos13030378

    Article  Google Scholar 

  • Homsi R, Shiru MS, Shahid S et al (2020) Precipitation projection using a CMIP5 GCM ensemble model: a regional investigation of Syria. Eng Appl Comput Fluid Mech 14:90–106. https://doi.org/10.1080/19942060.2019.1683076

    Article  Google Scholar 

  • Iqbal Z, Shahid S, Ahmed K et al (2020) Evaluation of global climate models for precipitation projection in sub-Himalaya region of Pakistan. Atmos Res 245:105061. https://doi.org/10.1016/j.atmosres.2020.105061

    Article  Google Scholar 

  • Iqbal Z, Shahid S, Ahmed K et al (2021) Evaluation of CMIP6 GCM rainfall in mainland Southeast Asia. Atmos Res 254:105525. https://doi.org/10.1016/j.atmosres.2021.105525

    Article  Google Scholar 

  • Karim R, Tan G, Ayugi B et al (2020) Evaluation of historical CMIP6 model simulations of seasonal mean temperature over Pakistan during 1970–2014. Atmos (Basel). https://doi.org/10.3390/atmos11091005

    Article  Google Scholar 

  • Karmalkar AV, Thibeault JM, Bryan AM, Seth A (2019) Identifying credible and diverse GCMs for regional climate change studies—case study: northeastern United States. Clim Change 154:367–386. https://doi.org/10.1007/s10584-019-02411-y

    Article  Google Scholar 

  • Khan SI, Hong Y, Gourley JJ et al (2014) Evaluation of three high-resolution satellite precipitation estimates: potential for monsoon monitoring over Pakistan. Adv Sp Res 54:670–684. https://doi.org/10.1016/j.asr.2014.04.017

    Article  Google Scholar 

  • Khan F, Ali S, Mayer C et al (2022) Climate change and spatio-temporal trend analysis of climate extremes in the homogeneous climatic zones of Pakistan during 1962–2019. PLoS One 17:e0271626

    Article  Google Scholar 

  • Kim Y-H, Min S-K, Zhang X et al (2020) Evaluation of the CMIP6 multi-model ensemble for climate extreme indices. Weather Clim Extrem 29:100269. https://doi.org/10.1016/j.wace.2020.100269

    Article  Google Scholar 

  • Klutse NAB, Quagraine KA, Nkrumah F et al (2021) The climatic analysis of summer monsoon extreme precipitation events over West Africa in CMIP6 simulations. Earth Syst Environ 5:25–41. https://doi.org/10.1007/s41748-021-00203-y

    Article  Google Scholar 

  • Kulkarni A, Sabin TP, Chowdary JS et al (2020) Precipitation changes in India BT—assessment of climate change over the Indian Region: a report of the ministry of earth sciences (MoES), Government of India. In: Sanjay J, Gnanaseelan C et al (eds) Krishnan R. Springer, Singapore, pp 47–72

    Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science (80–) 304:1623–1627

    Article  Google Scholar 

  • Lee S-Y, Lung S-CC, Chiu P-G et al (2022) Northern hemisphere urban heat stress and associated labor hour hazard from ERA5 reanalysis. Int J Environ Res Public Health 19:8163

    Article  Google Scholar 

  • Liu Y, Yang Y (2022) Detecting a declining trend of multidepth soil moisture over the mongolian plateau from 1950 to 2020 using ERA5-land reanalysis datasets. IEEE Access 10:95509–95526

    Article  Google Scholar 

  • Lutz AF, ter Maat HW, Biemans H et al (2016) Selecting representative climate models for climate change impact studies: an advanced envelope-based selection approach. Int J Climatol 36:3988–4005. https://doi.org/10.1002/joc.4608

    Article  Google Scholar 

  • Mahmood R, Jia S (2016) Assessment of impacts of climate change on the water resources of the transboundary Jhelum River basin of Pakistan and India. Water 8:246

    Article  Google Scholar 

  • Marotzke J, Jakob C, Bony S et al (2017) Climate research must sharpen its view. Nat Clim Chang 7:89–91. https://doi.org/10.1038/nclimate3206

    Article  Google Scholar 

  • McHale MR, Ludtke AS, Wetherbee GA et al (2021) Trends in precipitation chemistry across the U.S 1985–2017: quantifying the benefits from 30 years of Clean Air Act amendment regulation. Atmos Environ 247:118219. https://doi.org/10.1016/j.atmosenv.2021.118219

    Article  Google Scholar 

  • Mistry MN, Schneider R, Masselot P et al (2022) Comparison of weather station and climate reanalysis data for modelling temperature-related mortality. Sci Rep. https://doi.org/10.1038/s41598-022-09049-4

    Article  Google Scholar 

  • Nashwan MS, Shahid S, Wang X (2019) Assessment of satellite-based precipitation measurement products over the hot desert climate of Egypt. Remote Sens. https://doi.org/10.3390/rs11050555

    Article  Google Scholar 

  • Perkins SE, Alexander LV, Nairn JR (2012) Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys Res Lett. https://doi.org/10.1029/2012GL053361

    Article  Google Scholar 

  • Praveen B, Talukdar S, Shahfahad et al (2020) Analyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approaches. Sci Rep 10:10342. https://doi.org/10.1038/s41598-020-67228-7

    Article  Google Scholar 

  • Qin Y, Li B, Chen Z et al (2018) Spatio-temporal variations of nonlinear trends of precipitation over an arid region of northwest China according to the extreme-point symmetric mode decomposition method. Int J Climatol 38:2239–2249

    Article  Google Scholar 

  • Qiu D, Wu C, Mu X et al (2022) Spatial-temporal analysis and prediction of precipitation extremes: a case study in the Weihe River Basin, China. Chinese Geogr Sci 32:358–372. https://doi.org/10.1007/s11769-022-1271-7

    Article  Google Scholar 

  • Radcliffe DE, Mukundan R (2017) PRISM vs. CFSR precipitation data effects on calibration and validation of SWAT models. J Am Water Resour Assoc 53:89–100. https://doi.org/10.1111/1752-1688.12484

    Article  Google Scholar 

  • Raju K, Kumar D (2014) Ranking of global climate models for India using multicriterion analysis. Clim Res 60:103–117

    Article  Google Scholar 

  • Reddy NM, Saravanan S (2023) Extreme precipitation indices over India using CMIP6: a special emphasis on the SSP585 scenario. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-023-25649-7

    Article  Google Scholar 

  • Rosenzweig C, Iglesius A, Yang X-B, et al (2001) Climate change and extreme weather events. Implicat Food Prod Plant Dis Pests

  • Saddique N, Khaliq A, Bernhofer C (2020) Trends in temperature and precipitation extremes in historical (1961–1990) and projected (2061–2090) periods in a data scarce mountain basin, northern Pakistan. Stoch Environ Res Risk Assess 34:1441–1455. https://doi.org/10.1007/s00477-020-01829-6

    Article  Google Scholar 

  • Sajjad H, Ghaffar A (2019) Observed, simulated and projected extreme climate indices over Pakistan in changing climate. Theor Appl Climatol 137:255–281. https://doi.org/10.1007/s00704-018-2573-7

    Article  Google Scholar 

  • Salehie O, Hamed MM, Ismail TB, Shahid S (2022a) Projection of droughts in Amu river basin for shared socioeconomic pathways CMIP6. Theor Appl Climatol. https://doi.org/10.1007/s00704-022-04097-2

    Article  Google Scholar 

  • Salehie O, Ismail TB, Hamed MM et al (2022b) Projection of hot and cold extremes in the amu river basin of Central Asia using GCMs CMIP6. Stoch Environ Res Risk Assess. https://doi.org/10.1007/s00477-022-02201-6

    Article  Google Scholar 

  • Salman SA, Shahid S, Ismail T et al (2018) Selection of climate models for projection of spatiotemporal changes in temperature of Iraq with uncertainties. Atmos Res 213:509–522. https://doi.org/10.1016/j.atmosres.2018.07.008

    Article  Google Scholar 

  • Samo SR, Bhatti N, Saand A et al (2017) Temporal analysis of temperature and precipitation trends in Shaheed Benazir Abad Sindh, Pakistan. Eng Technol Appl Sci Res 7:2171–2176

    Article  Google Scholar 

  • Sharafati A, Pezeshki E, Shahid S, Motta D (2020) Quantification and uncertainty of the impact of climate change on river discharge and sediment yield in the Dehbar river basin in Iran. J Soils Sediments 20:2977–2996. https://doi.org/10.1007/s11368-020-02632-0

    Article  Google Scholar 

  • Shen L, Wen J, Zhang Y et al (2022) Performance evaluation of ERA5 extreme precipitation in the yangtze river delta, China. Atmos (Basel) 13:1416

    Google Scholar 

  • Shiru MS, Chung E-S (2021) Performance evaluation of CMIP6 global climate models for selecting models for climate projection over Nigeria. Theor Appl Climatol 146:599–615. https://doi.org/10.1007/s00704-021-03746-2

    Article  Google Scholar 

  • Shiru MS, Shahid S, Chung E-SS et al (2019) A MCDM-based framework for selection of general circulation models and projection of spatio-temporal rainfall changes: a case study of Nigeria. Atmos Res 225:1–16. https://doi.org/10.1016/j.atmosres.2019.03.033

    Article  Google Scholar 

  • Shiru MS, Shahid S, Dewan A et al (2020) Projection of meteorological droughts in Nigeria during growing seasons under climate change scenarios. Sci Rep 10:10107. https://doi.org/10.1038/s41598-020-67146-8

    Article  Google Scholar 

  • Sillmann J, Kharin VV, Zhang X et al (2013) Climate extremes indices in the CMIP5 multimodel ensemble: part 1. Model evaluation in the present climate. J Geophys Res Atmos 118:1716–1733

    Article  Google Scholar 

  • Sillmann J, Thorarinsdottir T, Keenlyside N et al (2017) Understanding, modeling and predicting weather and climate extremes: challenges and opportunities. Weather Clim Extrem 18:65–74. https://doi.org/10.1016/j.wace.2017.10.003

    Article  Google Scholar 

  • Sobh MT, Hamed MM, Nashwan MS, Shahid S (2022a) Future projection of precipitation bioclimatic indicators over Southeast Asia using CMIP6. Sustainability 14:1–18. https://doi.org/10.3390/su142013596

    Article  Google Scholar 

  • Sobh MT, Nashwan MS, Amer N (2022b) High Resolution Reference Evapotranspiration for Arid Egypt: comparative analysis and evaluation of empirical and artificial intelligence models. Int J Climatol. https://doi.org/10.1002/joc.7894

    Article  Google Scholar 

  • Šraj M, Bezak N (2020) Comparison of time trend- and precipitation-informed models for assessing design discharges in variable climate. J Hydrol 589:125374. https://doi.org/10.1016/j.jhydrol.2020.125374

    Article  Google Scholar 

  • Stephenson DB, Diaz HF, Murnane RJ (2008) Definition, diagnosis, and origin of extreme weather and climate events. Clim Extrem Soc 340:11–23

    Article  Google Scholar 

  • Stocker T, Plattner G-K, Dahe Q (2014) IPCC climate change 2013: the physical science basis-findings and lessons learned. In: EGU General Assembly Conference Abstracts. p 17003

  • Syed A, Zhang J, Rousta I et al (2022a) Statistical analysis of precipitation variations and its forecasting in Southeast Asia using remote sensing images. Front Environ Sci. https://doi.org/10.3389/fenvs.2022.832427

    Article  Google Scholar 

  • Syed Z, Ahmad S, Dahri ZH et al (2022b) Hydroclimatology of the Chitral River in the indus basin under changing climate. Atmos 13:295

    Article  Google Scholar 

  • Tank AMK, Zwiers FW, Zhang X (2009) WMO guidelines on extremes guidelines on analysis of extremes in a changing climate in support of informed decisions. Clim data Monit 52

  • Tian-Jun Z, Li-Wei ZOU, Xiao-Long C (2019) Commentary on the coupled model intercomparison project phase 6 (CMIP6). Adv Clim Chang Res 15:445

    Google Scholar 

  • Ullah S, You Q, Ullah W, Ali A (2018) Observed changes in precipitation in China-Pakistan economic corridor during 1980–2016. Atmos Res 210:1–14. https://doi.org/10.1016/j.atmosres.2018.04.007

    Article  Google Scholar 

  • Ullah S, You Q, Zhang Y et al (2020) Evaluation of CMIP5 models and projected changes in temperatures over South Asia under global warming of 1.5 °C oC, 2 °C, and 3 °C. Atmos Res. https://doi.org/10.1016/j.atmosres.2020.105122

    Article  Google Scholar 

  • Ullah W, Wang G, Lou D et al (2021) Large-scale atmospheric circulation patterns associated with extreme monsoon precipitation in Pakistan during 1981–2018. Atmos Res 253:105489. https://doi.org/10.1016/j.atmosres.2021.105489

    Article  Google Scholar 

  • Wang J, Xin L, Wang X, Jiang M (2022a) The Impact of Climate Change and Grain Planting Structure Change on Irrigation Water Requirement for Main Grain Crops in Mainland China. Land 11:2174

    Article  Google Scholar 

  • Wang Y-R, Hessen DO, Samset BH, Stordal F (2022b) Evaluating global and regional land warming trends in the past decades with both MODIS and ERA5-Land land surface temperature data. Remote Sens Environ 280:113181

    Article  Google Scholar 

  • Warszawski L, Frieler K, Huber V et al (2014) The inter-sectoral impact model intercomparison project (ISI–MIP): project framework. Proc Natl Acad Sci 111:3228–3232

    Article  Google Scholar 

  • Waseem S, Muhammad I, Rehan L et al (2022) Performance evaluation and comparison of observed and reanalysis gridded precipitation datasets over Pakistan. Theor Appl Climatol 4100:1093–1116

    Google Scholar 

  • Wu J, Zha J, Zhao D (2017) Evaluating the effects of land use and cover change on the decrease of surface wind speed over China in recent 30 years using a statistical downscaling method. Clim Dyn 48:131–149

    Article  Google Scholar 

  • Xu C, Fu H, Yang J, Wang L (2022a) Assessment of the relationship between land use and flood risk based on a coupled hydrological & ndash;hydraulic model: a case study of Zhaojue River Basin in Southwestern China. Land 11:1182

    Article  Google Scholar 

  • Xu H, Chen H, Wang H (2022b) Future changes in precipitation extremes across China based on CMIP6 models. Int J Climatol 42:635–651

    Article  Google Scholar 

  • Yue Y, Yan D, Yue Q et al (2021) Future changes in precipitation and temperature over the Yangtze River Basin in China based on CMIP6 GCMs. Atmos Res 264:105828

    Article  Google Scholar 

  • Zahid M, Rasul G (2011) Frequency of extreme temperature and precipitation events in Pakistan 1965–2009. Sci Int 23:313–319

    Google Scholar 

  • Zittis G, Hadjinicolaou P, Fnais M, Lelieveld J (2016) Projected changes in heat wave characteristics in the eastern Mediterranean and the Middle East. Reg Environ Chang 16:1863–1876

    Article  Google Scholar 

Download references

Funding

The authors received no financial support for the research, authorship, and publication.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design.

Corresponding author

Correspondence to Shamsuddin Shahid.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5047 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, Z., Hamed, M.M., Muhammad, M.K.I. et al. Performance evaluation of CMIP6 GCMs for the projections of precipitation extremes in Pakistan. Clim Dyn 61, 4717–4732 (2023). https://doi.org/10.1007/s00382-023-06831-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-023-06831-6

Keywords

Navigation