Skip to main content

Advertisement

Log in

Climate change impact to Mackenzie river Basin projected by a regional climate model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A regional climate model, WRF (Weather Research and Forecasting model), was set-up and fine-tuned to simulate the possible impacts of climate change to the Mackenzie River Basin (MRB) of Canada from May to October. The baseline (1979–2005) regional climate of the MRB simulated by WRF agrees well with gridded observed climate data, ANUSPLIN of Environment Canada. Next, WRF projected the regional climate change of MRB for 2041–2100 by dynamic downscaling RCP4.5 and RCP8.5 climate scenarios of three global climate models (GCMs), ACCESS1–3, CCSM4, and CanESM2. Based on RCP4.5 and RCP8.5 climate scenarios downscaled by WRF, air temperature of MRB is projected to increase by 2.5–3.8 °C and 4.5–6.9 °C in the 2050 s and 2080 s, respectively. In general, the air temperature of MRB is projected to increase marginally higher in colder regions of higher latitude and elevation. In contrast, the seasonal precipitation of MRB is only projected to increase marginally in the 2080 s under the RCP4.5 and RCP8.5 scenarios, respectively. The projected extreme precipitation indices show that future precipitation events would become more intensive and of longer durations. Under both RCP4.5 and RCP8.5 climate scenarios, the annual counts of days with total precipitation exceeding 10 mm of MRB (R10mm) are projected to increase by 18% in 2041–2100; the maximum 5-day precipitation (Rx5day) could increase by 9.4%. More studies should be conducted to gain a better understanding of the potential impacts of global warming to MRB and possible adaptive measures to mitigate these impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

Download references

Acknowledgements

This study was funded by Transport Canada under the Northern Transport Adaptation Initiative (NTAI) program. The ANUSPLIN, NARR data, GCM climate scenarios data of CMIP5 and ERA-Interim reanalysis data, etc., were downloaded from the websites of Environment Canada NCEP, ESGF and ECMWF, respectively. Supercomputing resources of this study was provided by Compute Canada’s WestGrid supercomputing program. The regional climate model, WRF (Weather Research and Forecasting), was downloaded from the website of wrf-model.org. The study was funded by Natural Sciences and Engineering Research Council of Canada under NSERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thian Yew Gan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, CC., Gan, T.Y. & Wang, J. Climate change impact to Mackenzie river Basin projected by a regional climate model. Clim Dyn 54, 3561–3581 (2020). https://doi.org/10.1007/s00382-020-05177-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-020-05177-7

Keywords

Navigation