Skip to main content

Advertisement

Log in

Enhancement of vegetation-rainfall feedbacks on the Australian summer monsoon by the Madden–Julian Oscillation

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A regional climate modeling analysis of the Australian monsoon system reveals a substantial modulation of vegetation-rainfall feedbacks by the Madden Julian Oscillation (MJO), both of which operate at similar sub-seasonal time scales, as evidence that the intensity of land–atmosphere interactions is sensitive to the background atmospheric state. Based on ensemble experiments with imposed modification of northern Australian leaf area index (LAI), the atmospheric responses to LAI anomalies are composited for negative and positive modes of the propagating MJO. In the regional climate model (RCM), northern Australian vegetation feedbacks are characterized by evapotranspiration (ET)-driven rainfall responses, with the moisture feedback mechanism dominating over albedo and roughness feedback mechanisms. During November–April, both Tropical Rainfall Measuring Mission and RCM data reveal MJO’s pronounced influence on rainfall patterns across northern Australia, tropical Indian Ocean, Timor Sea, Arafura Sea, and Gulf of Carpentaria, with the MJO dominating over vegetation feedbacks in terms of regulating monsoon rainfall variability. Convectively-active MJO phases support an enhancement of positive vegetation feedbacks on monsoon rainfall. While the MJO imposes minimal regulation of ET responses to LAI anomalies, the vegetation feedback-induced responses in precipitable water, cloud water, and rainfall are greatly enhanced during convectively-active MJO phases over northern Australia, which are characterized by intense low-level convergence and efficient precipitable water conversion. The sub-seasonal response of vegetation-rainfall feedback intensity to the MJO is complex, with significant enhancement of rainfall responses to LAI anomalies in February during convectively-active MJO phases compared to minimal modulation by the MJO during prior and subsequent calendar months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Barrett BS, Leslie LM (2009) Links between tropical cyclone activity and Madden–Julian Oscillation Phase in the North Atlantic and Northeast Pacific basins. Mon Weather Rev 137:727–744

    Article  Google Scholar 

  • Baxter S, Weaver S, Gottschalck J, Xue Y (2014) Pentad evolution of wintertime impacts of the Madden–Julian Oscillation over the contiguous United States. J Clim 27:7356–7367

    Article  Google Scholar 

  • Berhane F, Zaitchik B (2014) Modulation of daily precipitation over East Africa by the Madden–Julian Oscillation. J Clim 27:6016–6034

    Article  Google Scholar 

  • Betts RA (2000) Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408:187–190

    Article  Google Scholar 

  • Birch CE, Webster S, Peatman SC, Parker DJ, Matthews AJ, Li Y, Hassim MEE (2016) Scale interactions between the MJO and the western Maritime Continent. J Clim 29:2471–2492

    Article  Google Scholar 

  • Bonan GB (1994) Comparison of two land-surface process models using prescribed forcings. J Geophys Res 99:25803–25818

    Article  Google Scholar 

  • Bonan GB (2002) Ecological climatology: concepts and applications, Cambridge University Press, Cambridge, p 678

    Google Scholar 

  • Bonan G, Pollard D, Thompson S (1992) Effects of boreal forest vegetation on global climate. Nature 359:716–718

    Article  Google Scholar 

  • Caparotta S (2008) The Madden–Julian Oscillation and tropical cyclone frequency variability. Master of Science Thesis, Department of Geography and Anthropology, Louisiana State University

  • Charney JG (1975) Dynamics of deserts and drought in the Sahel. Q J R Meteorol Soc 101:193–202

    Article  Google Scholar 

  • Charney JG, Quirk WJ, Chow SH, Kornfield J (1977) A comparative study of the effects of albedo change on drought in semi-arid regions. J Atmos Sci 34:1366–1385

    Article  Google Scholar 

  • Chase TN, Pielke RA, Kittel TGF, Nemani R, Running SR (1996) The sensitivity of a general circulation model to global changes in leaf area index. J Geophys Res 101:7393–7408

    Article  Google Scholar 

  • Chen Y, Del Genio AD (2009) Evaluation of tropical cloud regimes in observations and a general circulation model. Clim Dyn 32:355–369

    Article  Google Scholar 

  • Chen G-S, Notaro M, Liu Z, Liu Y (2012) Simulated local and remote biophysical effects of afforestation over the Southeast United States in boreal summer. J Clim 25:4511–4522

    Article  Google Scholar 

  • CLIVAR Madden–Julian Oscillation Working Group (2009) MJO simulation diagnostics. J Clim 22:3006–3030

    Article  Google Scholar 

  • Costa MHC, Foley JA (2000) Combined effects of deforestation and doubled atmospheric CO2 concentrations on the climate of Amazonia. J Clim 13:18–34

    Article  Google Scholar 

  • Del Genio AD, Chen Y, Kim D, Yao M-S (2012) The MJO transition from shallow to deep convection in CloudSat/CALIPSO data and GISS GCM simulations. J Clim 25:3755–3770

    Article  Google Scholar 

  • Dickinson RE (1984) Modeling evapotranspiration for three-dimensional global climate models. Geophys Monogr 29:58–72

    Google Scholar 

  • Dickinson RE, Henderson-Sellers A (1988) Modeling tropical deforestation: a study of GCM land-surface parameterizations. Q J R Meteorol Soc 114:439–462

    Article  Google Scholar 

  • Dickinson RE, Henderson-Sellers A, Kennedy PJ, Wilson MF (1986) Biosphere-atmosphere transfer scheme (BATS) for the NCAR community climate model. NCAR Technical Note NCAR/TN-275 + STR, pp, Boulder, CO, p 69

  • Dickinson RE, Henderson-Sellers A, Rosenzweig, Sellers PJ (1991) Evapotranspiration models with canopy resistance for use in climate models. Agric For Meteorol 54:373–388

    Article  Google Scholar 

  • Dirmeyer PA, Shukla J (1994) Albedo as a modulator of climate response to tropical deforestation. J Geophys Res 99:20863–20877

    Article  Google Scholar 

  • Evans S, Marchand R, Ackerman T (2014) Variability of the Australian monsoon andprecipitation trends at Darwin. J Clim 27:8487–8500

    Article  Google Scholar 

  • Findell KL, Eltahir EAB (1997) An analysis of the soil moisture-rainfall feedback, based on direct observations from Illinois. Water Resour Res 33:725–735

    Article  Google Scholar 

  • Gallimore RG, Kutzbach JE (1996) Role of orbitally induced changes in tundra area in the onset of glaciation. Nature 381:503–505

    Article  Google Scholar 

  • Gallimore R, Jacob R, Kutzbach JE (2005) Coupled atmosphereocean-vegetation simulations for modern and mid-Holocene climates: role of extratropical vegetation cover feedbacks. Clim Dyn 25:755–776

    Article  Google Scholar 

  • Gibbard S, Caldeira K, Bala G, Phillips TJ, Wickett M (2005) Climate effects of global land cover change. Geophys Res Lett 32:L23705. https://doi.org/10.1029/2005GL024550

    Article  Google Scholar 

  • Giorgi F et al (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Climate Res 52:7–29

    Article  Google Scholar 

  • Goswami BN (2005) South Asian summer monsoon. intra-seasonal variability of the atmosphere-ocean climate system. In: Lau WKM, Waliser DE (eds). Springer, pp 19–62

  • Govindasamy B, Duffy PB, Caldeira K (2001) Land use changes and northern hemisphere cooling. Geophys Res Lett 28:291–294

    Article  Google Scholar 

  • Grell G, Dudhia J, Stauffer DR (1994) A description of the fifth generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech Note NCAR/TN-398 + STR, NCAR, Boulder, CO

  • Guo Z, Dirmeyer PA (2013) Interannual variability of land-atmosphere coupling strength. J Hydrometeorol 14:1636–1646

    Article  Google Scholar 

  • Haltiner GJ, Williams RT (1980) Numerical prediction and dynamic meteorology. Wiley, Oxford, p 477

    Google Scholar 

  • Henderson-Sellers A, Dickinson RE, Durbidge TB, Kennedy PJ, McGuffie K, Pitman AJ (1993) Tropical deforestation: modeling local- to regional-scale climate change. J Geophys Res 98:7289–7315

    Article  Google Scholar 

  • Hendon HH, Liebmann B (1990) The intraseasonal (30–50 day) oscillation of the Australian summer monsoon. J Atmos Sci 47:2909–2923

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM multi-satellite precipitation analysis: quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J Hydrometeorol 8(1):38–55

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kang H-S, Xue Y, Collatz GJ (2007) Assessment of satellite-derived leaf area index datasets using a general circulation model: seasonal variability. J Clim 20:993–1015

    Article  Google Scholar 

  • Kim Y, Wang G (2012) Soil moisture-vegetation-precipitation feedback over North America: its sensitivity to soil moisture climatology. J Geophys Res. https://doi.org/10.1029/2012JD017584

    Article  Google Scholar 

  • Koster RD et al (2006) GLACE: the global land-atmosphere coupling experiment. Part I: overview. J Hydrometeorol 7:590–610

    Article  Google Scholar 

  • Kummerow C, Barnes W, Kozu T, Shiue J, Simpson J (1998) The tropical rainfall measuring mission (TRMM) sensor package. J Atmos Ocean Technol 15:809–817

    Article  Google Scholar 

  • Lee J-E et al (2012) Reduction of tropical land region precipitation variability via transpiration. Geophys Res Lett 39:L19704. https://doi.org/10.1029/2012GL053417

    Article  Google Scholar 

  • Liu Z, Notaro M, Kutzbach J, Liu N (2006) An observational assessment of global vegetation-climate feedbacks. J Clim 19(5):787–814

    Article  Google Scholar 

  • Liu Z, Notaro M, Argenti JP, Gallimore RG (2010) Indirect vegetation-soil moisture feedback with application to Holocene North Africa climate. Glob Change Biol 16:1733–1743

    Article  Google Scholar 

  • Ma D, Notaro M, Liu Z, Chen G, Liu Y (2013) Simulated impacts of afforestation in East China monsoon region as modulated by ocean variability. Clim Dyn 41:2439–2450

    Article  Google Scholar 

  • Madden RA, Julian PR (1971) Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J Atmos Sci 28:702–708

    Article  Google Scholar 

  • Madden RA, Julian PR (1972) Description of global-scale circulation cells in the tropics with a 40–50 day period. J Atmos Sci 29:1109–1123

    Article  Google Scholar 

  • Madden RA, Julian PR (2005) Historical perspective. Intraseasonal variability of the atmosphere-ocean climate system. In: Lau WKM, Waliser DE (eds)., Springer, pp 1–18

  • Marshall AG, Hendon HH (2015) Subseasonal prediction of Australian summer monsoon anomalies. Geophys Res Lett 42:10913–10919

    Article  Google Scholar 

  • McPherson RA (2007) A review of vegetation–atmosphere interactions and their influences on mesoscale phenomena. Prog Phys Geogr 31:261–285

    Article  Google Scholar 

  • Mei R, Wang GL, Gu HH (2013) Summer land-atmosphere coupling strength over the US: results from a regional climate model RegCM4.0-CLM3.5. J Hydrometeorol 14:946–962

    Article  Google Scholar 

  • Meng XH, Evans JP, McCabe MF (2014) The impact of observed vegetation changes on land-atmosphere feedbacks during drought. J Hydrometeorol 15:759–776

    Article  Google Scholar 

  • Miller G, Mangan J, Pollard D, Thompson S, Felzer B, Magee J (2005) Sensitivity of the Australian monsoon to insolation and vegetation: implications for human impact on continental moisture balance. Geology 33:65–68

    Article  Google Scholar 

  • Murphy MJ Jr, Siems ST, Manton MJ (2016) Regional variation in the wet season of northern Australia. Mon Weather Rev 144:4941–4962

    Article  Google Scholar 

  • Narisma GT, Pitman AJ (2003) The impact of 200 years of land cover change on the Australian near-surface climate. J Hydrometeorol 4:424–436

    Article  Google Scholar 

  • Nobre C, Sellers PJ, Shukla J (1991) Amazonian deforestation and regional climate change. J Clim 4:957–988

    Article  Google Scholar 

  • Notaro M (2017) Does climate affect the world’s vegetation—or is it the other way around? Scientia

  • Notaro M, Gutzler D (2012) Simulated impact of vegetation on climate across the North American monsoon region in CCSM3.5. Clim Dyn. https://doi.org/10.1007/s00382-010-0990-0

    Article  Google Scholar 

  • Notaro M, Liu Z (2008) Joint statistical and dynamical assessment of simulated vegetation feedbacks on climate over the boreal forests. Clim Dyn 31:691–712

    Article  Google Scholar 

  • Notaro M, Liu Z, Williams JW (2006) Observed vegetation-climate feedbacks in the United States. J Clim 19(5):763–786

    Article  Google Scholar 

  • Notaro M, Wang Y, Liu Z, Gallimore R, Levis S (2008) Combined statistical and dynamical assessment of simulated vegetation-rainfall interactions in North Africa during the mid- Holocene. Glob Change Biol 14:347–368

    Article  Google Scholar 

  • Notaro M, Chen G, Liu Z (2011) Vegetation feedbacks to climate in the global monsoon regions. J Clim 24:5740–5756

    Article  Google Scholar 

  • Notaro M, Chen G, Yu Y, Wang F, Tawfik A (2017) Regional climate modeling of vegetation feedbacks on the Asian-Australian monsoon systems. J Clim 30:1553–1582

    Article  Google Scholar 

  • Oleson KW et al (2008) Improvements to the Community Land Model and their impact on the hydrological cycle. J Geophys Res 113:1–26

    Article  Google Scholar 

  • Peng S, Robinson WA, Hoerling MP (1997) The modeled atmospheric response to midlatitude SST anomalies and its dependence on background circulation states. J Clim 10:971–987

    Article  Google Scholar 

  • Pielke R, Avissar R, Raupach M, Dolman AJ, Zhen X, Denning AS (1998) Interactions between the atmosphere and terrestrial ecosystems: influence on weather and climate. Glob Change Biol 4:461–475

    Article  Google Scholar 

  • Pitman AJ, Avila FB, Abramowitz G, Wang YP, Phipps SJ, de Noblet-Ducoudré N (2011) Importance of background climate in determining impact of land-cover change on regional climate. Nat Clim Change 1:472–475

    Article  Google Scholar 

  • Rauniyar SP, Walsh KJE (2011) Scale interaction of the diurnal cycle of rainfall over the Maritime Continent and Australia: influence of the MJO. J Clim 24:325–348

    Article  Google Scholar 

  • Rayner NA et al. (2006) UKMO-GISST/MOHMATN4/MOHSST6—Global Ice Coverage and SST (1856–2006) (internet). NCAS British Atmospheric Data Centre

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625

    Article  Google Scholar 

  • Ridout JA, Flatau MK (2011) Kelvin wave time scale propagation features of the Madden–Julian oscillation (MJO) as measured by the Chen-MJO index. J Geophys Res 116:D18102. https://doi.org/10.1029/2011JD015925

    Article  Google Scholar 

  • Risbey JS, Pook MJ, McIntosh PC, Wheeler MC, Hendon HH (2009) On the remote drivers of rainfall variability in Australia. Mon Weather Rev 137:3233–3253

    Article  Google Scholar 

  • Robertson AW, Kirshner S, Smyth P, Charles SP, Bates BC (2006) Subseasonal-to-interdecadal variability of the Australian monsoon over North Queensland. Q J R Meteorol Soc 132:519–542

    Article  Google Scholar 

  • Sellers PJ, Mintz Y, Sud YC, Dalcher A (1986) A simple biosphere model (SIB) for use with general circulation models. J Atmos Sci 43:505–531

    Article  Google Scholar 

  • Sellers PJ et al (1996) A revised land-surface parameterization (SiB2) for atmospheric GCMs. Part I: model formulation. J Clim 9:676–705

    Article  Google Scholar 

  • Shukla J, Mintz Y (1982) Influence of land-surface evapotranspiration on the Earth’s climate. Science 215:1498–1501

    Article  Google Scholar 

  • Snyder PK, Delire C, Foley JA (2004) Evaluating the influence of different vegetation biomes on the global climate. Clim Dyn 23:279–302. https://doi.org/10.1007/s00382-004-0430-0

    Article  Google Scholar 

  • Steiner AL et al (2009) Land surface coupling in regional climate simulations of the West African monsoon. Clim Dyn 33:869–892

    Article  Google Scholar 

  • Stöckli R, Rutishauser T, Dragoni D, O’Keefe J, Thornton PE, Jolly M, Lu L, Denning AS (2008) Remote sensing data assimilation for a prognostic phenology model. J Geophys Res 113:G04021. https://doi.org/10.1029/2008JG000781

    Article  Google Scholar 

  • Stöckli R, Rutishauser T, Baker I, Liniger MA, Denning AS (2011) A global reanalysis of vegetation phenology. J Geophys Res 116:G03020. https://doi.org/10.1029/2010JG001545

    Article  Google Scholar 

  • Straub KH (2013) MJO initiation in the real-time multivariate MJO index. J Clim 26:1130–1151

    Article  Google Scholar 

  • Straub KH, Kiladis GN, Ciesielski PE (2006) The role of equatorial waves in the onset of the South China Sea summer monsoon and the demise of El Niño during 1998. Dyn Atmos Oceans 42:216–238

    Article  Google Scholar 

  • Sud YC, Smith WE (1985) The influence of surface roughness of deserts on the July circulation. Bound Layer Meteorol 33:15–49

    Article  Google Scholar 

  • Sud YC, Shukla J, Mintz Y (1988) Influence of land-surface roughness on atmospheric circulation and precipitation: a sensitivity study with a general circulation model. J Appl Meteorol 27:1036–1054

    Article  Google Scholar 

  • Tawfik AB, Steiner AL (2011) The role of soil ice in land-atmosphere coupling over the United States: a soil moisture-precipitation winter feedback mechanism. J Geophys Res 116:D02113. https://doi.org/10.1029/2010JD014333

    Article  Google Scholar 

  • Ventrice MJ, Wheeler MC, Hendon HH, Schreck CJ III, Thorncroft CD, Kiladis GN (2013) A modified multivariate Madden–Julian Oscillation Index using velocity potential. Mon Weather Rev 141:4197–4210

    Article  Google Scholar 

  • Vincent CL, Lane TP (2016) Evolution of the diurnal precipitation cycle with the passage of a Madden–Julian Oscillation event through the Maritime Continent. Mon Weather Rev 144:1983–2005

    Article  Google Scholar 

  • Vincent CL, Lane TP (2017) A 10-year austral summer climatology of observed and modeled intraseasonal, mesoscale, and diurnal variations over the Maritime Continent. J Clim 30:3807–3828

    Article  Google Scholar 

  • Wang C, Guo Y (2012) Precipitable water conversion rates over the Qinghai-Xizang (Tibet) Plateau: changing characteristics with global warming. Hydrol Process 26:1509–1516

    Article  Google Scholar 

  • Wang F, Notaro M, Liu Z, Chen G (2014) Observed local and remote influences of vegetation on the atmosphere across North America using a model-validated statistical technique that first excludes oceanic forcings. J Clim 27:362–382

    Article  Google Scholar 

  • Weare BC, Nasstrom JS (1982) Examples of extended empirical orthogonal function analysis. Mon Weather Rev 110:481–485

    Article  Google Scholar 

  • Werth D, Avissar R (2002) The local and global effects of Amazon deforestation. J Geophys Res 107:D20. https://doi.org/10.1029/2001JD000717

    Article  Google Scholar 

  • Wheeler M, Henson HH (2004) An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon Weather Rev 132:1917–1932

    Article  Google Scholar 

  • Wheeler MC, McBride JL (2005) Australian-Indonesian monsoon. Intraseasonal variability in the atmosphere-ocean climate system. Lau WKM and Waliser DE (eds). Springer, pp 125–173

  • Wheeler MC, Hendon HH, Cleland S, Meinke H, Donald A (2009) Impacts of the Madden–Julian Oscillation on Australian rainfall and circulation. J Clim 22:1482–1498

    Article  Google Scholar 

  • Woodward FI, Lomas MR, Betts RA (1998) Vegetation-climate feedbacks in a greenhouse world. Philos Trans R Soc B 353:29–39

    Article  Google Scholar 

  • Wu M, Schurgers G, Rummukainen M, Smith B, Samuelsson P, Jansson C, Siltberg J, May W (2016) Vegetation-climate feedbacks modulate rainfall patterns in Africa under future climate change. Earth Syst Dyn 7:627–647

    Article  Google Scholar 

  • Wyrwoll K-H, McRobie FH, Notaro M, Chen G (2013) Indigenous vegetation burning practices and their impact on the climate of the northern Australian monsoon region. Hydrol Earth Syst Sci Dis 10:10313–10332

    Article  Google Scholar 

  • Xue Y, Higgins W, Kousky V (2002) Influences of the Madden Julian Oscillation on temperature and precipitation in North America during ENSO-neutral and weak ENSO winters. Preprints, Workshop on Prospects for Improved Forecasts of Weather and Short-term Climate Variability on Sub-seasonal Time Scales, NASA Goddard Space Flight Center, p 4. http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_mjo_index/CPCmjoindex.pdf. Accessed Apr 2017

  • Xue Y, De Sales F, Vasic R, Roberto Mechoso C, Arakawa A, Prince S (2010) Global and seasonal assessment of interactions between climate and vegetation biophysical processes: a GCM study with different land-vegetation representations. J Clim 23:1411–1433

    Article  Google Scholar 

  • Yasunari T (1980) A quasi-stationary appearance of the 30–40 day period in the cloudiness fluctuations during the summer monsoon over India. J Meteorol Soc Jpn 58:225–229

    Article  Google Scholar 

  • Zeng Z, Zhu Z, Lian X, Li LZX, Chen A, He X, Piao S (2016) Responses of land evapotranspiration to Earth’s greening in CMIP5 earth system models. Environ Res Lett 11:104006. https://doi.org/10.1088/1748-9326/11/10/104006

    Article  Google Scholar 

  • Zhang C (2005) Madden–Julian Oscillation. Rev Geophys 43:RG2003

    Google Scholar 

  • Zhang C (2013) Madden–Julian Oscillation: bridging weather and climate. Bull Am Meteorol Soc 94:1849–1870

    Article  Google Scholar 

  • Zhang Q, Gottschalck J, Xue Y (2007) Extension of the CPC MJO index to forecast mode. American Meteorological Society 16th Conference on Applied Climatology

  • Zhou S, Miller AJ (2005) The interaction of the Madden–Julian oscillation and the Arctic Oscillation. J Clim 18:143–159

    Article  Google Scholar 

Download references

Acknowledgements

The study was funded by award 1343904 from the National Science Foundation (NSF) Climate and Large Scale Dynamics program using computational resources from the NCAR Computational and Information Systems Lab. The author received valuable feedback, guidance, and modeling assistance from Ahmed Tawfik at NCAR and Yan Yu, Fuyao Wang, and Guangshan Chen at the University of Wisconsin-Madison.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Notaro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Notaro, M. Enhancement of vegetation-rainfall feedbacks on the Australian summer monsoon by the Madden–Julian Oscillation. Clim Dyn 51, 3093–3109 (2018). https://doi.org/10.1007/s00382-018-4067-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-018-4067-9

Keywords

Navigation